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Variation Source Identification in
Manufacturing Processes Based
on Relational Measurements of
Key Product Characteristics
Variation source identification for manufacturing processes is critical for product dimen-
sional quality improvement, and various techniques have been developed in recent years.
Most existing variation source identification techniques are based on a linear fault-
quality model, in which the relationships between process faults and product dimensional
quality measurements are linear. In practice, many dimensional measurements are actu-
ally nonlinearly related to the process faults: For example, relational dimension mea-
surements such as the relative distance between features are used to monitor composite
tolerances. This paper presents a variation source identification methodology in the pres-
ence of these relational dimension measurements. In the proposed methodology, the joint
probability density of the measurements is determined as a function of the process pa-
rameters; then, series of statistical comparisons are performed to differentiate and iden-
tify the variation source. A case study is also presented to illustrate the effectiveness of
the methodology. �DOI: 10.1115/1.2844591�

Keywords: relational dimension measurements, quality control, variation source
identification
Introduction
The ability to detect and reduce variation in manufacturing

ives competitive advantages to companies today, allowing them
o provide better quality products to their customers. Traditional
uality control in manufacturing focuses on statistical process
ontrol �SPC� to detect anomalies based on product and process
easurements. However, this approach does not provide guide-

ines to identify the variation source, a critical step toward varia-
ion reduction. The concept of variation source is illustrated for an
ssembly operation in which two parts are welded together �Fig.
�. In Fig. 1, a solid line is used to represent positions of the parts
onstrained by fixture locators at the nominal design, and a dashed
ine is used to represent the actual positions of the parts and fix-
ure elements. Figure 1�a� shows the final product as designed.
he assembly process is as follows: Part 1 is first located on the
xture and constrained by four-way Pin L1 and two-way Pin L2.
hen, Part 2 is located by four-way Pin L3 and two-way Pin L4.
he two parts are then welded together in a joining operation and

eleased from the fixture. If Pin L1’s position or diameter deviates
rom the nominal design, then, consequently, Part 1 will not be in
ts nominal design position, as shown in Fig. 1�b�. After joining
arts 1 and 2, the final part’s dimensions will deviate from the
esigned nominal values. In this example, mislocations of the lo-
ating pin can be manifested by mean shift or variance change in
he measurement data due, for example, to errors in the design or
he setup of the fixture. In the case of mean shift error, the error
an be compensated by process adjustment, for example, by low-
ring Pin L3 to align Part 2 with Part 1. The variance change error
an be caused by a variation of the location of Pin L1, for ex-
mple, due to pin worn-out or the excessive looseness of that pin.
he variance change error causing an excessive variation of pro-
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cess parameters, called “variation source,” cannot be easily com-
pensated for in most of the cases, unless adaptive assembly capa-
bility exists.

In most of the cases, the variation change can be detected by
SPC schemes; however, the variation source cannot be identified
using traditional SPC techniques. Moreover, the complexity of
modern manufacturing processes used in automotive, aerospace,
or electronic industries makes it very difficult to efficiently iden-
tify the variation sources based solely on the operators’ knowledge
and experience. For example, a typical automotive body assembly
process consists of 150–250 parts, with 55–75 stations �1�. On the
other hand, the development of a new sensor technology allows
deployment of end-of-line or distributed measurement stations,
which can measure up to 100% of assembled products. For in-
stance, a 100% dimensional inspection has been achieved for an
automotive assembly process using inline optical coordinate mea-
surement machines �OCMMs� �1�. The availability of product and
process measurement data as well as the criticality of problems
caused by product variation led to the significant development of
new methodologies for variation source identification.

Extensive research and numerous variation source identification
methodologies based on the following two assumptions have been
conducted: �i� Measured product dimensional quality characteris-
tics are critical to the assessment of the final product’s functional
requirements and assemblability. �ii� The relationship between the
measured product dimensional quality characteristics and the pro-
cess faults is linear, as shown by

Z = A · u + � �1�

In this equation, Z is a �m�1� random vector representing the
product quality measurements, u is a �n�1� random vector rep-
resenting the variation sources, A is a �m�n� design matrix de-
termined by the product and process information, and � is the
term capturing the random noise in the process. For example, in
the assembly process shown in Fig. 1, the deviations of the locat-
ing pins in the direction of x and y are variation sources. In this

example, there are n=8 possible variation sources and u
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��L1
T �L2

T �L3
T �L4

T �T, where �L1= ��L1,x �L1,y�T, with �L1,x corre-
ponding to the deviation of Pin L1 in the x direction. Further-
ore, the deviations of the measured points �M1, M2, M3, and
4� are captured in the product quality vector Z. In this example,

here are m=8 measurements and Z= ��M1
T �M2

T �M3
T �M4

T �T, where

M1= ��M1,x �M1,y�T, with �M1,x corresponding to the deviation of
oint M1 in the x direction. The variation source identification
nvolves the identification of matrix A and the estimation of the
ariances of the elements of u based on A and observations of Z.

Currently available variation source identification methodolo-
ies based on Eq. �1� can be classified into analytical and data-
riven approaches. The analytical approaches rely on the use of
nalytical fault-quality models developed based on physical
nowledge of the process. In other words, matrix A from Eq. �1�
s obtained through engineering analysis of the product and pro-
ess designs. Then, pattern-matching methods or direct estimation
ethods are used to estimate the variation sources. For example,
eglarek and Shi �2� proposed a pattern-matching variation source

dentification methodology based on principal component analy-
is. This method was extended by Ding et al. �3� for a single fault
iagnosis of multistage assembly processes. Also, Ceglarek and
hi �4�, Li et al. �5�, and Li and Zhou �6� extended the pattern-
atching method to the cases where measurement noise is un-

tructured and multiple faults occur simultaneously in the process.
ing et al. �7� and Zhou et al. �8� studied the diagnosability of
ultistage manufacturing processes based on the theory of linear
ixed-effect model. Zhou et al. �9� used a maximum likelihood

stimator and discussed the confidence interval of the estimated
esults. Huang and Shi �10� proposed a variational analysis
ethod for multistage manufacturing processes. The one-

imension relational measurements that are linear to the system
ault are considered in their work. A comparative analysis of vari-
us estimation methods is presented in Ding et al. �11�.

In the data-driven approaches, model matrix A is estimated
sing available historical observations of Z. Apley and Shi �12�
nd Apley and Lee �13� proposed methodologies to estimate the
odel matrix based on factor analysis and independent compo-

ent analysis, respectively. Most recently, Jin and Zhou �14,15�
roposed a procedure for self-improving data-driven variation
ource identification based on principal component analysis in the
ase where multiple faults occur in the process.

In both analytical and data-driven approaches, the measured
roduct quality characteristics are based on direct measurements
f the individual key characteristics represented as individual
oints that deviated from the nominal design or based on linear
ombinations of point deviations. When the magnitude of process
ault is small, the relationship between the deviations of the indi-
idual points and the process faults can often be well approxi-
ated as linear, as shown with the linear formulation of Eq. �1�.
hese quality characteristics’ measurements based on individual
oints are called linear measurements.

However, in practice, these linear measurements might not be
ufficient to represent the intended function for which the product

Fig. 1 Variation source
as designed. Instead, relational product quality characteristics,
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critical to the product intended function, might be measured and
monitored. The concept of relational product quality characteristic
is illustrated in Fig. 2 for a hinge.

In Fig. 2, the tolerances on the two holes of a hinge are repre-
sented following the geometric dimensioning and tolerancing
�GD&T� standards �16�. Such tolerances are called “composite”
since one hole’s positional tolerance is constrained by another
hole, which has its own positional tolerance. The critical product
characteristic in this example is the relative position of one hole
with respect to the other. This product characteristic is critical to
the function of the hinge to locate two pieces accurately with
respect to each other when allowing rotation between them. How-
ever, the position of the holes with respect to their housing does
not matter to this function.

Based on these examples, we can define a linear product char-
acteristic as a product characteristic solely based on individual
point deviations. Also, we can define a relational product charac-
teristic as a product characteristic not solely based on individual
point deviation, but rather on relations between points, features, or
multiple other product characteristics. In practice, the relational
product characteristic is often nonlinearly related to the corre-
sponding linear characteristics. For example, the relational prod-
uct characteristic of the hinge in Fig. 2 is the distance between the
two holes, which is nonlinearly related to the absolute positions of
these two holes. Although the measurement of relational charac-
teristic can be obtained by measuring the position of individual
points �i.e., the corresponding linear characteristic�, followed by a
calculation of the relational characteristic, it is often obtained and
reported through direct measuring in practice, particularly when
hard gauging is used. Thus, how to utilize the relational measure-
ments for variation source identification is an important engineer-
ing problem.

Current methodologies for variation source identification only
consider linear measurements. In this paper, we investigate the
variation source identification methodology when both linear and
relational measurements are available. The general model can be
represented as

an assembly operation

Fig. 2 Engineering drawing for a hinge illustrating relational
in
quality characteristics
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Z = F�A · u� + � �2�

here u is a �n�1� random vector, which represents the process
aults, A is a known matrix obtained from the engineering analy-
is of the process, Z is a �m�1� random vector of the product
uality characteristics measured during the inspection process, �
s a �m�1� random vector capturing the random noise in the

easurement process, and F is a vector of vector functions and
ill be discussed in detail in Sec. 2. The goal of the proposed
ethodology is to systematically identify the components of u

hat has a large variance based on the known matrix A, function
, and observations of quality measurements Z.
The paper is organized as follows: In Sec. 2, a mathematical

ormulation of the problem is provided and the overall methodol-
gy is outlined. Section 3 presents the details of each step of the
roposed methodology. An industrial case study illustrates the
ethodology in Sec. 4. Section 5 discusses the robustness of the
ethodology with respect to the assumptions. Finally, conclusions

nd future work are discussed in Sec. 6.

Problem Formulation
In this section, we first formulate the problem mathematically

nd present the assumptions of the proposed methodology. Then,
he overall methodology is outlined.

2.1 Mathematical Formulation. We assume that a known
ault-quality model that links the quality characteristics of the
orkpiece Z and the process parameters u exists, as expressed in
q. �2�. In this model, the vector of vector functions F is general
nd can be expressed as

F�·� = �f1�·� ¯ fm�·��T �3�

here fk�·� :Rn→R represents a vector function �k=1, . . . ,m�
nd m represents the dimension of the measurement vector Z. If
ll the functions fk�·� are linear for all k=1, . . . ,m, then Eq. �2� is
implified to Eq. �1�. However, as highlighted in the Introduction,
n many cases, function fk�·� is nonlinear, for example, when de-
cribing relational product characteristics such as �a� 2D distances
etween points, �b� 3D distances between features, and �c� mini-
um and maximum variations of the profile of a feature.
In this paper, for the sake of simplicity, the developed method-

logy will be discussed by using the functions representing dis-
ances. However, the presented methodology is general and can be
pplied to other functions as well. Without loss of generality, we
ssume that the first p measurements are linear measurements and
he next �m-p� measurements are distance measurements taken in
he process.

Denoting as Ak the kth row of design matrix A the overall
odel described by Eq. �2� can be written as

�Z1 ¯ Zp Zp+1 ¯ Zm�T

= �A1 · u ¯ Ap · u fp+1�A · u� ¯ fm�A · u��T + �

�4�
As mentioned earlier, the nonlinear functions represent dis-

ances between points on the workpiece: Given two points on
arts P1 and P2, we define the distance between these two points
s

Z = dist�P1,P2� = ��P1x − P2x�2 + �P1y − P2y�2 + �P1z − P2z�2

�5�

here �P1x , P1y , P1z� and �P2x , P2y , P2z� represent the coordinates
f points P1 and P2, respectively, and can be expressed as a linear
unction of the process variation sources u as

Pi = �Pix Piy Piz�T = �APix
· u APiy

· u APiz
· u�T �6�

Then, the complete model expressed in Eq. �2� can be repre-

ented as
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Zk = Ak · u + �k, k = 1, . . . ,p

Zk = dist�Pi,k,Pj,k� + �k, k = �p + 1�, . . . ,m �7�

where i and j are indices for points on the workpiece. Equation �7�
shows the general model expressed for p linear measurements and
�m-p� distance measurements.

The current available variation source identification methodolo-
gies cannot utilize the distance measurements to identify the
variation sources. Traditional pattern-matching methodologies are
based on the following fact: If Eq. �1� holds, the eigenvectors of
�Z �the covariance matrix of Z� that are associated with large
eigenvalues span the same linear space as the column vectors of
model matrix A associated with the faulty components of u �i.e.,
components with large variances�. Thus, if A is known, by com-
paring its columns with the eigenvectors of �Z, we can identify
which components of u are at fault. However, the following ex-
ample shows that, given two distinct variation sources, the eigen-
vectors of �Z are very close from each other; further, the example
shows that the eigenvectors are highly unstable if distance mea-
surements are included in the pattern-matching procedure.

In this example, we assume one linear measurement Z1 and one
distance measurement Z2 �corresponding to the distance between
points P1 and P2� and two possible variance sources, namely, u1
and u2. Principal components are used for variation source iden-
tification. For this example, we have

A = �0.6 1 0 0.2 0

0.9 0 1 0 0.5
�T

with the first row corresponding to the linear measurements, the
second and third rows corresponding to the position of point P1 in
the x and y directions, and the fourth and fifth rows corresponding
to the position of point P2 in the x and y directions. Therefore, Eq.
�7� can be expressed as

Z1 = 0.6u1 + 0.9u2 + �1

Z2 = �0.64u1
2 + 0.25u2

2 + �2 �8�

Figure 3 shows the plot of linear measurement Z1 versus rela-
tional measurement Z2. The points marked as circles correspond
to the case where the variation source is u1; the points marked as
squares correspond to the case where the variation source is u2.

Simulations of these two cases, where u1 and u2 are the varia-
tion sources, respectively, have been conducted, assuming that u1,
u2, �1, and �2 are independently identically distributed �iid� fol-
lowing a normal distribution with mean 0 and variance 2, 3, 0.1,
and 0.1, respectively. The simulation has been carried out 1000

Fig. 3 Illustration of the inefficiencies of PC as patterns for
variation source identification
times for 300 samples for each case; the results show that the
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igenvector associated with the largest eigenvalue are very close
o each other in these two cases, with a mean angle of 0.6797 deg
etween them. This implies that the two variation sources cannot
e differentiated using pattern-matching method. Also, the simu-
ation shows that the angle between the eigenvector associated
ith the largest eigenvalue and the x axis has a very large vari-

nce. As shown in Fig. 4, the eigenvector is very unstable: The
tandard deviation of the angle of the first PC to the x axis of the
easurements given that fault u1 occurs is 10.31 deg. This implies

hat the eigenvector cannot be used as a meaningful pattern for
ariation source identification in this case.

As shown with this example, current methodologies cannot be
pplied in the presence of the distance measurements. In the fol-
owing, the new methodology for variation source identification
ncluding both linear and relational measurements under the as-
umption that a single fault occurs is presented in detail. The
ssumption that a single fault occurs implies that a single element
n u has a large variance and is the major contributor to the prod-
ct dimensional quality. This assumption is widely accepted in the
iterature �2,17�, and is not restrictive in practice, given the small
robability of a fault happening in the system.

2.2 Methodology for Variation Source Identification Using
elational Product Characteristics. Equation �7� will be used as

he underlying model for the proposed variation source identifica-
ion. The general methodology is presented in this section. The
verall methodology consists of the generation of a distribution
unction library, each distribution function in the library corre-
ponding to a unique variation source; then, given product quality
easurements, a statistical comparison is used to verify which

istribution function provides the best fit to the data; the variation
ource corresponding to the distribution function providing the
est fit to the data will be claimed to have occurred in the process.
he general procedure is presented in Fig. 5. Each of the steps is
utlined in the following paragraphs and is detailed in Sec. 3.

Step 1. In the first step, the model presented in Eq. �7� is sim-
lified based on the assumption that no multiple variation source
xists simultaneously in the system. This step is repeated for each
ariation source, and a set of n nonlinear models linking the prod-
ct quality characteristics with the variation source is obtained,
ach corresponding to a single variation source. The single varia-
ion source assumption ensures that the magnitude of the variance
f the component of u corresponding to the process fault is much
arger than the variances of all other components.

Step 2. For each of the n models obtained in the first step, the
ultivariate joint probability density function �pdf� of all linear

nd relational measurements is derived. In order to derive the joint

ig. 4 Distribution of the angle between the first PC and the x
xis
dfs, the noise will be assumed to be independent of the variation

31007-4 / Vol. 130, JUNE 2008
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source. In this step, a library of distribution functions is created,
each element corresponding to a pdf assuming the realization of
one process fault.

Step 3. Based on the functions obtained in Step 2, and given the
data collected from the process and products, the likelihood func-
tions of the data are calculated.

Step 4. In this final step, a statistical procedure is used to decide
which variation source occurred in the system. A ratio of likeli-
hood functions is used for this purpose: A set of n simultaneous
independent comparisons is performed, and the criteria to deter-
mine which fault occurred in the system likelihood ratio is used as
a test.

The details of these four steps are presented in Sec. 3.

3 Variation Source Identification Using Nonlinear Re-
lations

3.1 Model Simplification. In this section, we present the pro-
cedure to simplify Eq. �7� under the assumption that only one fault
occurs in the process; under normal working conditions, the pro-
cess variables u are assumed to be normally distributed with zero
mean and covariance matrix �u=�2 ·In, where �2 is the variance
of the process parameters and n represents the number of variation
sources. If the fth fault, called fault f , occurs, the corresponding
element of u is assumed to be normally distributed with zero
mean and � f

2, with � f
2��2. Also, we assume that the measure-

ment noise � is normally distributed with mean 0 and covariance
matrix ��=��

2 ·Im, where ��
2 is the variance of the noise and m

represents the number of measurements. The assumption of inde-
pendence of the noise from the variation sources has been com-
monly used in existing variation source identification �2,17–19�
and validated in practice since most measuring systems do not
influence the manufacturing process.

If fault f occurs in the system, Eq. �7� can be rewritten as

Zk
f = ak,fuf + �k, k = 1, . . . ,p

Zk
f = ��aPix,f − aPjx,f�2 + �aPiy,f − aPjy,f�2 + �aPiz,f

− aPjz,f
�2	uf	 + �k

= bk,f · 	uf	 + �k, k = �p + 1�, . . . ,m �9�

where ai,j corresponds to the element on the ith row and the jth
column of the model matrix A and 	·	 is the absolute value func-

Fig. 5 Steps for the variation source identification including
relational measurements
tion. Because the measure of a distance is always positive, we
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ave Zk
f �0 for k= �p+1� , . . . ,m. Therefore, Zk

f = 	Zk
f 	 and Eq. �9�

an be represented as

Zk
f = ak,fuf + �k, k = 1, . . . ,p

Zk
f = 	bk,f	uf	 + �k	, k = �p + 1�, . . . ,m �10�

To simplify the notation in the remaining of the paper, we in-
roduce the constant matrix C defined such that the fth column C f
f C gathers the parameters corresponding to the simplified model
n Eq. �10� given the assumption that fault f occurs in the process;
ll parameters of C are known from the components of model
atrix A.

C = �C1 ¯ Cn� = 

a1,1 ¯ a1,n

] � ]

ap,1 ¯ ap,n

bp+1,1 ¯ bp+1,n

] � ]

bm,1 ¯ bm,n

�
or each possible fault f = �1, . . . ,n�, the measurements assuming

hat fault f occurs can be expressed as a function of the process
arameters in an integrated simplified model,

Z f = �C1,fuf + �1 ¯ Cp,fuf + �p 	Cp+1,f	uf	

+ �p+1	 ¯ 	Cm,f	uf	 + �m	� �11�

here Ci,j corresponds to the elements on the ith row and the jth
olumn of the constant matrix C.

3.2 Joint Probability Density Function of the Measure-
ents Assuming Fault f. In this step, the multivariate joint pdf of
f is derived from Eq. �11� obtained in Step 1. Z f is a set of m

andom variables. The joint cumulative density function of Z f

enoted as Gf�Z f�, is given by

Gf�Z f� = P�Z f � z = P�Z f � z1, . . . ,Z f � zm �12�
1 m

here � is the variance of the variable X of interest.

ournal of Manufacturing Science and Engineering
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Equation �12� can be rewritten as Eq. �13� by partitioning the
space for uf 	0 and uf 
0, where uf is the component of u cor-
responding to the process fault f ,

Gf�Z f� = P�Z f � z when uf 	 0 + P�Z f � z when uf 
 0
�13�

Based on the constant matrix C defined in Step 1, on the two
conditions uf 	0 and uf 
0 highlighted in Eq. �13�, and on the
assumption that � is normally distributed with mean 0 and cova-
riance matrix ��=��

2 ·Im, Eq. �11� can be decomposed into a set of
equations as in Table 1.

In Table 1, it is shown that although the system is nonlinear
overall, the simplified model is piecewise linear: The system of
equations shown creates a partition of the space of u and �, de-
noted as �, into 2�m−p+1� regions �r �r=1, . . . ,2�m−p+1��, and the
relationship between the quality measurements and the process
fault is linear in each region. To provide an intuitive understand-
ing of these partitions, an example is shown in Fig. 6 for the
system introduced in Sec. 2. In this example, two measurements
were taken, one linear and one nonlinear, Z1 and Z2, respectively,
and there were two possible variation sources u1 and u2. The
partition of the space when u1 occurs is shown in Fig. 6.

In this example, for k=1 �e.g., for the linear measurement�, the
space �u1 ,�1 ,�2� is not partitioned, as expected. For k=2 �e.g., for
the nonlinear measurement�, the space is partitioned into four re-
gions �denoted as 1–4 in Fig. 6� separated by the half-plane ��2
=−0.9u1� for u1	0 and by the half-plane ��2=0.9u1� for u1
0.

With each region �r being identified, the joint density of Z f can
be calculated on the entire space � as

Gf�Z f� = �
�

�P�Z f � z	uf � �r� =�
�

g�uf,�1, . . . ,�m� �14�

where g�uf ,�1 , . . . ,�m� is the joint probability function of the m
+1 random variables uf , ��k�k=1,. . .,m; because all the regions �r

constitute the full space �, the cumulative density function can be

determined by successive integration as shown in
Gf�Z f� =�
uf=−�

� ��
�1=−�

�z1−C1,f�

¯�
�p=−�

�zp−Cp,f� �
�p+1=−�zp+1+Cp+1,f�

�zp+1−Cp+1,f�

¯�
�m=−�zm+Cm,f�

�zm−Cm,f�

g�uf,�1, ¯ ,�m�dz1 ¯ dzm� �15�
The assumption of independence of the measurement noise
eads to the simplification of the joint pdf g�uf ,�1 , . . . ,�m� using

g�uf,�1, . . . ,�m� = g0�uf�g1��1� ¯ gm��m� �16�

here g0�·� ,g1�·� , . . . ,gm�·� are the marginal pdfs of uf ,�1 , . . . ,�m.
urthermore, since both process variable u and noise � are as-
umed to be normally distributed and centered, their pdfs are de-
ermined by

g0�X� = ¯ = gm�X� =
1

�2
e−X2/2�2

�17�

2

From Eqs. �11� and �15�–�17�, the pdf of Z f is determined as

gf�Z f� =
e−�ZfT

Zf/�2��
2��

m/2��
m−12�m−2p�/2+1���

2 + � f
2 · C f

TC f

��
k=1

2m−p

e���f
2 · Sk · B · diag�Cf� · Zf�2/�2��

2���
2+�f

2·Cf
TCf�� �18�

where B= �B1 	B2�, with B1= �1�2m−p�p, B2 is a �2m−p� �m− p��
combinatory matrix. An illustration of a combinatory matrix is
given by

If p = 2 and m = 4, then B2 = 

1 1

− 1 1

1 − 1

− 1 − 1
� �19�

The vector Sk is a �2m−p�1� selection vector where its kth
component is the only nonzero component and is equal to 1,

diag�·� corresponds to the operation transforming a �m�1� vector
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nto a �m�m� diagonal matrix, and C f is the fth column of the
onstant matrix C defined in Step 1.

In the following, we present plots of the joint pdf, given differ-
nt scenarios to illustrate the behavior of the function based on the
xample introduced in Sec. 2. In this example, Z1 refers to the
inear measurement and Z2 refers to the relational measurement.
igure 7�a� illustrates the scenario when no fault occurs. The next

hree plots �Figs. 7�b�–7�d�� correspond to the scenarios when
ault u2 occurs with different magnitudes, characterized by a
ignal-to-noise ratio �S /N0=�u2

2 /��
2� equal to 3, 5, and 10 for Figs.

�b�–7�d� respectively. Figure 7�e� shows the scenario when fault
1 occurs with a signal-to-noise ratio of 5.
Insights about the behavior of the pdf can be drawn from Fig. 7.

irst, as we can see from all figures, the pdf is truncated; i.e., the
robability is zero when Z2
0; this is expected since the measure
f a distance is always positive. Second, the distribution of Zk

f for
=1, . . . , p is symmetric, i.e., the following condition is true:

∀u0 � R, P�Zk
f � zk	uf = u0� = P�Zk

f � zk	uf = − u0� �20�

Therefore, it is expected that the pdf be symmetric with respect
o the linear measurement of Z1, as shown in Fig. 7. Third, from
ig. 7�a�, we can see that when no fault happens, the multivariate
df is simply a multivariate half-normal distribution associated
ith a normal distribution with mean 0 and covariance matrix

�=��
2 ·Im. This is expected since there is only noise in the system

f no fault happens in the system. Fourth, from Figs. 7�b�–7�d�, we

Table 1 Partition of the space and conditional equations

k uf �k Zk
f

k= �1, . . . , p� ∀uf �R ∀�k�R Zk
f = �Ck,fuf +�k�

k= �p+1, . . . ,m� uf 	0 �k	−Ck,f ·uf Zk
f = �Ck,fuf +�k�

�k
−Ck,f ·uf Zk
f =−�Ck,fuf +�k�

uf 
0 �k	Ck,f ·uf Zk
f = �−Ck,fuf +�k�

�k
Ck,f ·uf Zk
f = �Ck,fuf −�k�

ig. 6 Partition of the space for the example in Sec. 2 when u1

s the variation source
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can see the change in the shape of the pdf due to the fault, de-
pending on the fault magnitude. Fifth, by comparing Figs. 7�c�
and 7�e�, we see that the shape of the pdf is different for each
fault; in other words, the relative positions of the tails of the joint
pdf depend on the parameters of matrix C introduced in Sec. 2.
This implies that we can differentiate different faults by compar-
ing the fit of observed measurements to the pdfs, given each fault
scenario. This is actually the basic idea of the proposed variation
source identification technique.

3.3 Determination of the Likelihood Functions. Given
quality measurements of sample size N, the likelihood function of
the sample is defined as

Lf�C f,� f
2,��

2� = ��
i=1

N

gf�Zi�� �21�

where Zi corresponds to the ith measurement. The likelihood is a
function of m+2 parameters C1,f , . . . ,Cm,f ,� f

2 ,��
2; �C1,f , . . . ,Cm,f�

are known from the constant matrix C defined in Step 1. However,
� f

2 and ��
2 are unknown and need to be estimated to determine the

value of the likelihood function. The variance of measurement
noise can often be obtained from gauge R&R study �20�. In a
typical assembly process, the noise variance is around 0.05 mm2.
A faulty condition is characterized by an increase of variance for
a process variable. The threshold to define when a fault occurs �in
other words, to define � f in Eq. �18�� is left at the practitioners’
discretion: The closer the value is taken from the true fault vari-
ance shift, the better the result will be. A conservative way to
estimate the variance shift of the fault is to use � f

2=5��
2. Alterna-

tively, it is possible to calculate an estimate of the fault variance,
given sample data as follows:

�a� Assume that fault f happens; then, find j� p such that
C j,f �0, where C j,f is the element on the jth row and the
fth column of matrix C.

�b� Determine the variance of the collected data for the jth
measurement using

�̂ f
2 =

Var�Z j� − �̂�
2

C j,f
2 �22�

where �̂� is the estimated variance of the noise.

The derivation of Eq. �22� is straightforward from the variance
of a linear combination of normal random variables.

3.4 Likelihood Comparison for the Identification of the
Variation Source. In this section, a likelihood comparison �21,22�
procedure is used to identify the variation source. This compari-
son is used to examine whether a model provides a good fit to the
sample data. We define the ensemble � f, which contains all pa-
rameters of the model defined in Eq. �11�: C f, � f, ��. Also, we
define the model ensemble for all n possible faults �
=�k=1,. . .,n�k as the union of all ensembles of the individual fault
models. When fault f occurs in the process, the best fit for the data
is provided by the model with parameters from � f; therefore, we
perform a series of n simultaneous independent comparisons to
identify the model that provides a good fit to the observed data.
For i=1, . . . ,n,
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� � �i versus � � �/�i �23�
here � corresponds to the true parameters and � /�i.

Fig. 7 Plots of the pdf
For each fault, the following ratio of likelihoods is determined,

ournal of Manufacturing Science and Engineering
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�i = − 2 log� Li�Ci,�i
2,��

2�
sup
j�i

„L j�C j,� j
2,��

2�…� �24�

ven different scenarios
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here sup�·� is the supremum function.
Given that the log function monotonically increases, Eq. �24�

an be expressed using Eq. �21�,

�i = − 2�
t=1

N

log�gi�Zt
i�� + 2 sup

j�f
��

t=1

N

log�gj�Zt
j��� �25�

If fault f happens in the system, it is expected that
f�C f ,� f

2 ,��
2�	sup

j�f

�L j�C j ,� j
2 ,��

2��, and therefore

f
0. Thus, for i=1, . . . ,n, if
i
0, the likelihood of fault i is the largest among all possible li

Case Study

4.1 Process Description. An industrial case study for an au-
omotive assembly process is used to demonstrate the derivation
f the models, the pdfs and the likelihood functions comparisons
s discussed in this paper. Further, different scenarios for fault
agnitudes and sample sizes are simulated to demonstrate the

ffectiveness of the proposed methodology.
The case study is based on a simplified process for automotive

ood assembly �Fig. 8�. The assembly consists of three stages
nvolving the assembly of four parts. In the first stage, the right
ender is assembled with the body; in the second stage, the left
ender is assembled with the body; and in the last stage, the hood
s assembled with the body and fenders. Figure 8 shows the sub-
ssemblies at the end of each station. In this process, there is a
otal of 27 locators among which four will be considered as po-
ential variation sources.

The potential variation sources and quality measurements
points P1– P7� for the hood assembly process used in this simu-
ation are shown in Fig. 9. The four locators L1–L4 under study
re �1� deviation of locator L2 in the y direction, �2� deviation of
ocator L1 in the y direction, �3� deviation of locator L3 in the x
irection, and �4� deviation of locator L4 in the z direction. In this
ssembly process, five product quality characteristics are critical

nd can be summarized as follows. �1� Linear product quality

oth linear and relational measurements are considered.

31007-8 / Vol. 130, JUNE 2008
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ihoods and fault i is claimed to have happened in the system.

characteristics: deviation of point P1 in the y direction, deviation
of point P2 in the x direction, and deviation of point P3 in the y
direction. �2� Relational product quality characteristics: distance
between points P4 and P5 and distance between points P6 and P7.
These relational product quality characteristics are observed in
practice as they are critical both for the aesthetics of the hood and
for the closing and sealing function of the hood.

Through an engineering analysis, the linear relationship be-
tween the process faults and the locations of the seven points can
be obtained �10,17,19,23–29�. Defining Y as a �15�1� vector of
point locations and u �4�1� as the vector of process faults, where
Y�1� is the deviation of point P1 in the y direction, Y�2� is the
deviation of point P2 in the x direction, Y�3� is the deviation of
point P3 in the y direction, Y�4–6� are the deviations of point P4
�on the Fender� in x-y-z-directions, Y�7–9� are the deviations of
point P5 �on the Hood� in x-y-z-directions, Y�10–12� are the de-
viations of point P6 �on the Fender� in x-y-z-directions, and
Y�13–15� are the deviations of point P7 �on the Hood� in

Fig. 8 Three step simplified hood assembly process
x-y-z-directions, the corresponding model matrix A is
A = 

− 0.33 0 0 0 0 0 0 0.0675 0.0375 0 0.37 0 0 0.0675 0

− 0.33 0 0 0 0 0 0 0.7698 0 0.4 0.37 0.037 0 0.7698 0

0 − 1 0 0 0 0 0 0.3571 0 − 0.2 0 0.037 0 0.3571 0

0 0 1 0 1 0 0 0 0 0 1 0 0 0 0
�

T

t has to be pointed out that, in practice, the above mentioned five
roduct quality characteristics are measured instead of the vector
.

4.2 Numerical Study. A single fault scenario is simulated in
his case study corresponding to the failure of locator L1 in the y
irection. Matrix A is used to generate the five measured product
haracteristics under different combinations of noise variance ��

2,
ault variance � f

2, and sample sizes N. The variance of the noise,

�
2, take values from �0.01, 0.05, 0.1, 0.2�. For each noise vari-
nce, the corresponding fault variance � f

2 is calculated so that the
ignal-to-noise �S /N0� ratios, defined as � f

2 /��
2, are 3, 5, and 10.

lso, for each combination, cases of three different sample sizes
are generated �N=20, 50, and 100�.
The methodology will be applied to two situations: �i� when

nly the linear measurements are considered for the variation
ource identification, and �ii� when all measurements including
Step 1: Model simplification. For each possible variation source
�f =1, . . . ,4�, the column C f is generated. For example, for f =1,
C1= �−0.33 0 0 �0.76892�0.42+ �0.37−0.7698�2+0.0372�T; thus,

C1 = �− 0.33 0 0 0.7698 0.5668�T �26�

Step 2: Determination of the parameters of the pdf. Given m
=5, the total number of measurements, and p=3, the number of
linear measurements, matrix B= �B1 	B2� is determined as

B = 

1 1 1 1 1

1 1 1 − 1 1

1 1 1 1 − 1

1 1 1 − 1 − 1
� �27�

For each possible variation source �f =1, . . . ,4�, and based on C f

and B, the pdf is determined using Eq. �18�

Step 3: Determination of the likelihood functions. Using the
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imulated data, the variance of the fault is estimated using Eq.
22� assuming that variance of the noise is known. Then, for each
ossible variation source �f =1, . . . ,4�, the likelihood function
f�C f ,� f

2 ,��
2� is calculated.

Step 4: Likelihood comparisons. For each possible variation
ource �f =1, . . . ,4�, the likelihood ratios are determined for cases
hen only linear measurements are considered and when all mea-

urements are considered simultaneously. When the ratio is nega-
ive, the corresponding fault is claimed to have happened in this
ystem.

4.3 Variation Source Identification Results. For each simu-
ation, 10,000 replications are performed. The results of the simu-
ation for the relational measurements, are shown in Table 2. Table

shows the identification rate of the variation source. By identi-
cation, we understand the case when only the likelihood ratio
orresponding to the fault that occurred is negative; in other
ords, the procedure can exactly pinpoint the specific fault that
ccurred in the system.

The variation source cannot be identified if only the linear mea-
urements are used. Indeed, the system formed by matrix A is not

able 2 Identification rates considering both linear and rela-
ional measurements

N Noise

Faulty locator L1

S /N0

3
�%�

5
�%�

10
�%�

20 0.01 71.12 90.18 96.83
0.05 81.25 97.63 99.97
0.1 83.39 98.16 99.97
0.2 86.85 98.89 99.98

50 0.01 85.75 98.15 99.84
0.05 94.69 99.96 100
0.1 95.89 99.97 100
0.2 97.75 99.99 100

100 0.01 94.29 99.93 100
0.05 99.11 100 100
0.1 99.42 100 100
0.2 99.77 100 100

Fig. 9 Process parameters and measurements on the part
ournal of Manufacturing Science and Engineering
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diagnosable when only considering the linear measurements; in
other words, the linear measurements do not contain enough in-
formation to the identification of all process faults �7,8�: The true
variation source therefore can not be pointed out as the root cause
of the dimension deviations of the product by only using linear
measurements.

On the other hand, as shown in Table 2, the variation source can
be identified with different rates, given different scenarios, when
using both linear and relational measurements. In the following,
we discuss the different influential factors on the identification
rate.

Clearly, from Table 2, the sample size affects the identification
rate: As the sample size increases, the identification rate increases,
given that all other parameters are kept constant. Similarly, from
Table 2, as the signal-to-noise ratio increases, the identification
rate increases. This result is expected since an increase in the
signal-to-noise ratio corresponds to an increase of the importance
of the fault signal over the perturbation in the measurement sig-
nals. Also, as the noise variance increases, the identification rate
slightly increases. In fact, this can be explained by the fact that the
signal-to-noise ratio is kept as constant. When the noise level
increases and the signal-to-noise ratio does not change, the abso-
lute difference between the fault variance and noise variance will
increase and it will benefit the variance source identification
procedure.

These simulation results can be used to develop heuristics
based on the number of possible faults in the system, the param-
eters in the model, the noise level, and the expected variance shift
of the faulty parameters. For the hood assembly example, with a
sample size of 50, which is ten times the dimension of the mea-
surement, and a signal-to-noise ratio larger than 5, the proposed
variation source identification methodology provides a satisfac-
tory performance.

5 Robustness Analysis
In order to make the problem analytically tractable and to gain

useful insights, several assumptions are adopted in the derivation
of this method. However, these assumed conditions might not be
precisely met in practice. In this section, the robustness of the
methodology is verified with respect to its assumptions using
simulations based on the assembly process introduced in Sec. 4.
First, the single fault assumption is relaxed, and a second weak
variation source is introduced in the system. Then, the assumption
of independence of the measurement noise with the fault is re-
laxed and the impact of correlation is studied. Finally, the assump-
tion of normality of the fault is relaxed and the power of the
methodology is measured as the distribution of the fault becomes
less normal.

5.1 Presence of a Weak Variation Source in the System. In
this paper, the occurrence of a single fault is defined as that in-
stance when a single element in u �the random vector of the varia-
tion sources� has a large variance and is the major contributor to
the product dimensional quality. In order to test the robustness of
the methodology to the existence of a weak variation source, a
new signal-to-noise �S /N1� ratio is introduced corresponding to
the ratio between the variance of the dominant variation source
�S� and the variance of a weaker variation source �N1�. In this new
simulation, the white noise level �N0� is fixed and defined as 0.05.
The results are shown in Table 3.

The trends shown in Table 3 are quite similar to those obtained
when considering white noise only; thus, the methodology is
shown to be robust. Other insights from Table 3 include the fact
that the sample size has a quite significant impact on fault detec-
tion, and as sample size increases, the identification rate increases,
given that all other parameters are kept constant. Similarly, as the
signal-to-noise �S /N1� ratio increases, the detection power in-

creases. This is a clearly expected result, since it shows that as the
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ariance of the weak variation source gets weaker, i.e., as the
ominant variation source gets stronger, the identification of the
ominant variation source becomes easier.

5.2 Presence of Correlation Between Variation Source and
oise. Simulation has been performed in the presence of correla-

ion between noise and variation source. In other words, the vari-
bles u and � in the model have a generic covariance matrix

� = � �u �u�

�u� ��
�

here �u and �� are diagonal matrices and �u� is constructed
uch that the correlation of the noise and variation source is con-
rolled with a scalar parameter �ij, where �ij =�ij / ��ii� j j� is the
orrelation coefficient between fault i and measurement noise j. In
he expression, �ij is the covariance between the ith variance
ource and the jth component of noise, and �ii and � j j are the
tandard deviation of the ith variance source and the jth compo-
ent of noise, respectively. Simulation has been carried out for
ifferent correlation scenarios and correlation coefficients; as �ij
ncreases, the correlation between the variation source and the
oise increases. The simulation is repeated 10,000 times for val-
es of �ij ranging from 0 to 0.3. The first two scenarios simulate
he case where the fault is separately correlated with two different

easurements. The third scenario is simulating the case where the
ault is simultaneously correlated with two measurement noises.
n all simulations, the other parameters of the simulation are kept
onstant: The signal to noise ratio is defined as 5 and the sample
ize is 50. The results are gathered in Table 4.

As shown with this simulation, the methodology performs well

able 3 Results considering an additional weak variation
ource

N N1

Faulty locator L1

S /N1

3
�%�

5
�%�

10
�%�

20 0.05 87.82 98.63 99.97
0.1 91.47 98.63 99.95
0.2 94.12 98.83 99.92

50 0.05 97.8 99.98 100
0.1 99.02 99.98 100
0.2 99.71 100 100

100 0.05 99.85 100 100
0.1 99.99 100 100
0.2 100 100 100

Table 4 Results considering correlation

�i , j� N0

Faulty locator L1

�ij

0
�%�

0.1
�%�

0.2
�%�

0.3
�%�

L1,�2 0.05 99.96 99.96 99.96 99.97
0.2 99.99 99.99 99.99 99.99

L1,�3 0.05 99.96 99.56 91.23 36.2
0.2 99.99 99.79 94.16 43.3

L1 ,�2 ,�4 0.05 99.96 99.95 99.95 99.95
0.2 99.99 100 100 99.99
31007-10 / Vol. 130, JUNE 2008
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in the presence of correlation; however, as expected, as the corre-
lation increases, the methodology’s detection power reduces. It
can therefore be concluded that correlation disturbs the methodol-
ogy negatively. The methodology is robust to this disturbance.
One point worth pointing out is that the impact of the correlation
is related not only to the magnitude of correlation, but also to the
structure of the correlation. For example, Table 2 shows that the
correlation does not have a significant impact on the identification
rate when L1 is correlated with �2 while it possesses a clear im-
pact when L1 is correlated with �3.

5.3 Impact of Non-Normally Distributed Faults. The ro-
bustness of the methodology when the faults are not normally
distributed has been studied as well. The normality assumption for
the faults is relaxed, and a Weibull distribution is used instead.
The rational of selecting Weibull distribution is that the Weibull
distribution has two parameters, one shape parameter and one
scale parameter. When the scale parameter is equal to 3.4, the
Weibull distribution behaves like a normal distribution. The shape
parameter for the distribution is set to 0.5 and the scale parameter
varies from 0.1 to 12. The simulation is repeated 10,000 times,
and the variance of the white noise is kept constant at 0.05. The
results are gathered in Table 5.

The results clearly show the robustness of the method to a
relaxation of the normality assumption. Of course, the results in
Table 5 show that the closer the distribution is to normal �scale
parameter equals 3.4�, the better the results.

6 Conclusion and Future Work
In this paper, we present a methodology for identifying varia-

tion sources in manufacturing processes including relational di-
mension measurements. The nonlinear measurements studied in
this paper consist of the relative distance between two features.
The proposed methodology is based on the explicit derivation of
the pdf of the measurements, assuming that a single fault occurs in
the system. The pdf is then used to conduct a series of compari-
sons between likelihood ratios to identify the process parameter at
fault based on sampled measurements. This methodology is ge-
neric and can be applied to other nonlinear measurements than the
distance between two features. If the joint pdf of the measure-
ments cannot be obtained analytically, nonparametric methods of
estimating joint probability functions can be used. A case study
has been conducted to illustrate the effectiveness of the method-
ology. It has been demonstrated that including nonlinear relational
measurements dramatically improves variation source identifica-
tion capability. Also, in the case study, the influence of signal to
noise ratios and sample sizes has been discussed. Furthermore, the
robustness of the methodology to the relaxation of the key as-
sumptions has been tested. The proposed methodology can be
used for variation source identification using nonlinear relational
measurements critical to product functionality.

The proposed methodology generates a new direction in diag-

Table 5 Identification rate for Weibull distributed faults

Scale

Faulty locator L1

N

20
�%�

50
�%�

100
�%�

0.1 92.19 99.66 99.99
2 99.80 100 100

3.4 99.99 100 100
5 99.96 100 100
8 98.37 99.99 100

10 78.44 91.98 98.46
12 48.98 53.96 58.22
nosis extending current state of the art to the use of relational
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uality characteristics. Future extensions of this work include the
tudy of other relations, leading to the inclusion of complicated
easures such as form measures �flatness, circularity, and cylin-

ricity� in variation source identification. Also, the method needs
o be extended to scenarios when multiple faults occur. Finally,
he study of the influence of a structured measurement noise could
e investigated.
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