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Identification of Influential Functional Process Variables
for Surface Quality Control in Hot Rolling Processes
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Abstract—This paper focuses on surface quality improvement in hot
rolling processes. A systematic method based on functional data analysis
is developed to identify the key influential process variables. It provides
guidelines for hot rolling process control and can also be expanded to
generic scenarios of functional variable selection.

Note to Practitioners—Surface defects have been a long-term troubling
issue in hot rolling processes. In this paper, functional data analysis and rig-
orous statistical testing are integrated to identify the process variables that
significantly influence the surface quality of the finished products. The re-
sults can provide guidelines for root cause identification and surface quality
improvement in hot rolling processes.

Index Terms—Functional data analysis (FDA), functional variable, hit-
ting rate, hot rolling process, surface quality control.

I. INTRODUCTION

Modern hot rolling process is highly automated and often monitored
by many sensors. The large amount of sensing data (e.g., the billet tem-
perature at a certain rolling stand, billet speed, and the flow rate of the
cooling water) provide great opportunities for effective quality control
of hot rolling processes [1], [2]. In this paper, we focus on the surface
quality control issue. Surface defect is a weakness or stress concen-
tration area of the bulk material and, hence, could cause catastrophic
failure when the rolled product is in use. Therefore, it is highly desired
to detect, reduce, and eventually eliminate the surface defects. Current
surface quality control of hot rolling processes is very primitive. In-
deed, the surface defects reduction has been identified as a major re-
search thrust by American Iron and Steel Institute [3].

One major obstacle in the surface quality control is the limited
knowledge of the root causes of surface defects, and thus even sur-
face defects are detected, people often do not know how to adjust
the process to reduce them. This paper presents a technique that
can systematically identify the key influential process variables to
the occurrence of surface defects by using the process sensing and
surface quality data. Clearly, with this technique, useful insights and
guidelines can be obtained for surface quality control.

Fig. 1 shows the measurements of a typical process variable, the
billet temperature at the 21st rolling stand, for two billets. For each
billet, the measurements are made at equally spaced locations (total
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Fig. 1. Stand 21 Temperature signals of two steel billets.

80 locations in this example) along the steel billet. Since the process
variable measurement for a billet is a vector as a sample of a func-
tional curve, the process variables are called functional variables in this
paper. Due to the inevitable process noises and errors, the process vari-
ables are always different for different billets, as illustrated in Fig. 1.
This difference could be due to random disturbances and tend to be
small. This difference could also be due to systematic root causes in the
process and tend to be large. Intuitively, if a functional variable (e.g.,
“stand 21 temperature”) is influential to the surface quality, then the
samples of this variable from billets with and without surface defects
will tend to have large differences because these two types of billets
are usually produced under different working conditions. On the other
hand, if a process variable is not influential to the surface quality, then
the samples of this variable from the steel billets with and without sur-
face defects will not exhibit significant differences. Thus, by comparing
the samples of functional variables from billets with and without sur-
face defects, we can judge if a process variable is influential or not.

To compare functional variables, the critical features of the function
variable need to be extracted and compared. In this paper, this chal-
lenging problem is tackled using functional data analysis (FDA) ap-
proach. For each functional variable, a critical feature is extracted using
a unified FDA approach. Then, the steel billets are grouped into two
classes: the billets without surface defect, denoted as class A and the
billets with surface defects, denoted as class B. The features of the func-
tional variable extracted from those two classes are compared and the
significance of the difference is determined through a rigorous statis-
tical testing. A functional variable is said to be influential to the surface
defects when its difference between these two classes is significant.

This paper is organized as follows. The procedure of influential
process variable identification is presented in Section II. A case study
of a real industrial dataset is presented in Section III to demonstrate
the effectiveness of the developed procedures. Conclusion remarks
and future works are discussed in Section IV.

II. METHODS FOR IDENTIFYING INFLUENTIAL PROCESS VARIABLES

Our goal is to find out the key functional variables that are influ-
ential to the surface quality using the historical production data. Pre-
vious study [4] has shown that the surface quality in the hot rolling
process varies significantly for different billet diameter and material
grade. These two factors are usually specified by the customers and,
thus, cannot be changed. Thus, the material grade and the billet diam-
eter will be assumed to be fixed in this study. Section II-A provides a
brief review of FDA techniques. The critical feature selection and the

significance testing of the differences of the features are presented in
Sections II-B and II-C, respectively.

A. Functional Data Analysis (FDA) of Process Variables

A straightforward method to analyze functional variables is to treat
each element of a functional variable as an independent variable and
use traditional linear regression techniques to model the relationship
between each element of the functional variable and the surface quality.
However, the dimension of the problem increases dramatically as the
dimension of functional variable increases. One might think that the
huge dimensional problem can be resolved by applying principal com-
ponent analysis (PCA) for dimension reduction, and then choosing the
first few principal components for further analysis. Unfortunately, our
studies show that none of the first few principal components of those
functional variables are significant to the surface quality. Obviously,
the first few principal components fail to capture the critical informa-
tion in the hot rolling data relevant to the surface quality. In PCA, the
intrinsic smoothness of the variables is not considered: PCA assumes
that all the measurements along the same steel billet are not linked to-
gether in any particular order. This assumption does not hold for the hot
rolling data because all the functional variables are physical variables
whose elements are bonded by their adjacent elements and cannot be
arbitrary.

To solve this issue, FDA methodology can be applied. FDA method
assumes that the measurements of a functional variable for each steel
billet are sampled from an unknown smooth curve that can be estimated
by nonparametric regression techniques. FDA is currently an active re-
search area [5], [6]. The basic framework of FDA can be summarized
as follows.

Equation (1) is a general model for the typical functional data. Yij
is the jth component of the ith functional curve observation. The in-
dependent variable tij can be used to model either temporal or spatial
measurements. There are n curves (e.g., a single curve for each billet)
in total. Each observation is longitudinally (equally spaced) sampled at
m locations

Yij = fi(tij) + "ij

i = 1; . . . ; n;

j = 1; . . . ;m; tij 2 [0; 1] (1)

where fi is an unknown smooth function that will be estimated by non-
parametric regression, "ij are independent errors with mean E("ij) =
0 and finite variance var("ij) = �2i > 0. Compared with traditional
least square model assumption var("ij) = �2, our model assumes that
the variance of each individual curve can be different from each other,
and thus is more flexible. The value of tij is scaled to be within the
interval [0, 1] for the sake of easy interpretation. Any features that are
identified by the functional curves can be directly interpreted as being
located at its tij percentage along the steel billet length. An optimal
estimator (denoted as f̂i) of function fi can be obtained by minimizing

1

m

m

j=1

(Yij � fi(tij))
2 + �

1

0

f
(r)
i (u)2du; � > 0 (2)

where

f̂i =

(r+2)=2

k=1

ckxk +

m

k=(r+2)=2

ck

1 + �k�q
xk: (3)

For the detailed definitions of each parameter, please refer to [7]. The
parameter � is called the smoothing parameter of the curve, which gov-
erns the balance between the smoothness of the curve and the good-
ness-of-fit on the data. When � is large, the smoothness of the curve is
emphasized, while for � close to zero, the curve will be similar to the
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curve estimated by ordinary least square method. Rice and Silverman
[8] proposed a systematic way to calculate an optimal � by using a
cross-validation score. However, in most cases, a subjective selection
of � is sufficient for analysis.

B. Latent Feature Extraction

An individual functional curve can vary in many forms (the variation
of amplitude, phase, shape, etc.,). In general, it is not practical to com-
pare two individual curves directly. By assuming that all the individual
curves from the same working condition will be similar to each other
and thus share a similar latent feature, the latent feature for that partic-
ular working condition can be estimated as the average (mean) curve of
those individual curves [6]. For the steel billets without surface defects
(class A), the average of the curves is called the mean curve of class A
and can be calculated as follows:

MCA(t) =
1

nA
i2A

f̂i(t): (4)

The derivative of a mean curve can be defined as

DCA(t) =
1

nA
i2A

f̂
(d)
i

(t) (5)

where d is an integer number and nA is the number of observations in
class A. In this paper, only d = 1 is discussed. However, higher order
derivative curves (especially for d = 2) might also be of interest in
practice (e.g., accelerations of moving subjects). Similarly, MCB(t)
and DCB(t) can be obtained for the billets with surface defects (class
B). To study the functional variables in the hot rolling process, the
derivative of the mean curve will be treated as the latent feature of
the functional variable. The major reason to adopt the derivatives of
the mean curve instead of the original mean curve is that based on the
physical characteristics of the hot rolling processes, we know that the
change speed of the values of a process variable, instead of the values
themselves, impacts on the product quality significantly. Thus, the first
derivative of the mean curve is a better choice. This method can be gen-
eralized to other manufacturing processes, where the change speed of
the functional variable is of our primary interest. For a given functional
variable and a historical dataset, a visual plot can be used to compare
DCA(t) and DCB(t) by plotting them in the same figure. If DCA(t)
and DCB(t) are very similar to each other, it is sufficient to conclude
that the given functional variable has very little influence on the surface
quality and, thus, should be ruled out as an influential variable.

The visual plot is very efficient to quickly rule out those noninflu-
ential process variables if DCA(t) and DCB(t) almost coincide with
each other. However, for those variables with visually different deriva-
tive curves, it will be subjective to conclude whether such difference
is caused by the random sampling errors or actual systematic errors. A
quantitative method is proposed in Section II-C to solve this issue.

C. Quantification of the Significance of the Difference

To compare the difference betweenDCA(t) andDCB(t) for a given
functional variable, the difference between these two curves should
be quantified. It is well known that the severity of unevenness in the
steel structure tends to cause surface defects in the hot rolling process
and one major cause of the unevenness is the fast change of the func-
tional variables during the production. To utilize this important in-
formation, the fastest changing point of the process variables can be
used to quantify the difference. Mathematically, the fastest changing
point is corresponding to the largest point of the derivative curve of the
functional variable. Thus, the difference between max(DCA(t)) and
max(DCB(t)) could be used as a quantitative measure of the differ-
ence betweenDCA(t) andDCB(t). The function max( � ) is to search

for the largest peak within the curve. In general, the two ends of the
functional curve will have very large variation due to the estimation
error and, thus, should not be considered as a peak of the curve. An
immediate question is: How large the difference is large enough to
conclude that the functional variable is systematically different for two
classes? To answer this question, we propose the following method.

The whole dataset is separated into two portions: the training dataset
and the test dataset. The training dataset will be used to estimate the
derivative curves, while the test dataset will be used to quantify the
difference between the derivative curves. The derivative curves of two
mean curves DCA(t) and DCB(t) can be estimated from the training
dataset by the methods in Section II-B. For any observation U in the
test dataset, an association index (�) is proposed to quantify the likeli-
hood of U having surface defects. The association index is defined as
follows:

�(U) = abs(max(DCA)�max(DCA+U ))

�abs(max(DCB)�max(DCB+U )) (6)

where for any given class C (either class A or class B), C+U refers to
a class that includes all the observations in class C and the new obser-
vation U . The expression abs(max(DCC)�max(DCC+U )) actually
measures how the maximum point of the DCC curve will be affected
by admitting the new observation U into the class. This quantity will
tend to be small if the new observation U is very similar to the obser-
vations in class C. The function abs( � ) is to take the absolute value.
The abs( � ) function is applied by assuming that the fastest increase
and the fastest decrease of the process variables have approximately
the same effect to the unevenness of physical properties of steel billets.
Different weights can be assigned to improve this model if more indus-
trial knowledge is available. Clearly, the association index given in (6)
represents the similarity between the new observation U and class A
versus the similarity between the new observation U and class B. The
more the new observation U is different from class A, the larger the �
value.

For a functional variable that is influential to the surface quality, the
difference between its DCA(t) and DCB(t) should be large. Thus, for
a billet U with surface defects, the first term in (6) tends to be large and
the second term in (6) tends to be small. This leads to a large � value
for this billet. Consequently, for an influential functional variable, the
associated � value is helpful in identifying the steel billets with sur-
face defects. In other words, if the functional variable is influential,
the selection of n billets based on the first n largest � values should
have larger probability to have surface defects than the n steel billets
randomly picked from the dataset. On the other hand, if a function vari-
able is not influential, then the corresponding � values will tend to be
random and not helpful in identifying the billets with surface defects.

A consequential question is: how helpful the � value of a functional
variable is enough to conclude that the functional variable is influential
to the surface quality? To answer this question, the effectiveness of �
values can be quantified by comparing the following two billet selection
schemes. Assuming there are N steel billets in the test set, the goal is
to pick n(n < N) steel billets that are more likely to have surface
defects. Scheme I randomly picks n steel billets and scheme II chooses
n steel billets with the first n largest � values. We denote p1 and p2
as the proportion of steel billets with surface defects among n steel
billets chosen by the two schemes. p1 and p2 are also called “hitting
rate” of these two schemes. If a process variable is influential to the
surface quality, its � values will be informative to ensure that p2 > p1
is statistically significant. In summary, the comparison of these two
schemes is equivalent to the following hypothesis test:

H0 : p2 = p1 vs: H1 : p2 > p1:
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Fig. 2. An example of the image for the “checking” defect.

Scheme II is claimed to be superior to Scheme I if the test dataset tends
to reject the null hypothesis. A Pearson �2 test can be used for this
purpose. The �2 statistic can be calculated as follows:

�2 =
(p2n� p1n)

2

p1n

+
((1� p2)n� (1� p1)n)

2

1� p1n

=
n(p2 � p1)

2

p1(1� p1)
: (7)

Under the null hypothesis (p1 and p2 are similar to each other), the �2

statistic should follow a �2 distribution with one degree-of-freedom.
For a given p1 and p2 with p2 > p1, Scheme II is said to be significantly
better than Scheme I if

p2 > p1 +
�2

1;�p1(1� p1)

n
(8)

where �2

1;� is the critical value of �2 distribution with one degree-of-
freedom. At the level of � = 0:05, its value is approximately 3.84. If
the fastest change of a process variable is critical to the surface quality,
its corresponding hitting rate p2 should be large enough to reject the
null hypothesis and, thus, Scheme II will prevail. A functional variable
is said to be influential to the surface quality if Scheme II prevails in
the comparison.

This section proposes a general procedure to identify the process
variables that are influential to the surface quality in the hot rolling
process. The procedure will be applied to a real dataset from industry
to demonstrate its effectiveness in the next section.

III. CASE STUDY

In this case study, the surface defect of interest is called “checking”
[3], as illustrated in Fig. 2.

A steel billet group with “Material Grade H1214” and “Billet Diam-
eter 0.75” where many checkings have been historically detected has
been chosen for the study. There are 754 steel billets with complete sur-
face quality and functional variable measurements. The whole dataset
will be separated into two portions: The training and test datasets in-
clude the first quarter (188 billets in total) and the other three quarters
(566 billets in total), respectively. Among the training dataset, there
are 163 steel billets that have no checkings (class A). The other 25
steel billets have checkings (class B). From the training dataset, for a
given functional variable, DCA(t) and DCB(t) can be estimated by
using FDA. These two curves can be plotted in the same figure to iden-
tify the process variables that do not have much influence on the sur-
face quality. Fig. 3 shows such a figure for four functional variables.
The horizontal axis of Fig. 3 is the relative location along the steel
billet normalized by the billet length. Clearly, the derivatives of the
mean curves for some functional variables (e.g., “NTM Entry Speed,”
“NTM Entry Temperature,” etc.,) appear to be very similar to each other
and these variables should be identified as noninfluential. The func-
tional variables “flow rate of waterbox1” [Fig. 3(c)] and “stand 16 flow”
[Fig. 3(d)] show noticeable differences betweenDCA(t) and DCB(t).

Are both differences shown in Fig. 3 between the derivatives of mean
curves related to the surface quality? To answer this, Pearson �2 tests
is used to verify whether this difference between DCA(t) and DCB(t)
of “flow rate of waterbox1” is significant or not. For this particular ma-
terial grade and bar size, historical data show that the percentage of the
billets with at least one surface defects is 15%, which means that if bil-
lets are randomly picked from a population, then with 15% probability
a picked billet will have surface defects. Thus, we take 15% as the hit-
ting rate of the random pick scheme. Association index is computed
for each steel billet in the test dataset by using (6). In this example, we
will choose n = 150 steel billets with the largest � values. By checking
with the surface quality measurements, there are 37 billets with surface
defects. Thus, the hitting rate of Scheme II is 37=150�=25%, which is a
large improvement from the hitting rate (15%) of random pick scheme.
Given� = 0:05, the�2 statistic calculated by (7) is 10:065 > 3:84, in-
dicating that Scheme II is significantly better than Scheme I. Therefore,
we may conclude that “flow rate of waterbox1” is influential to the sur-
face quality. From (8), we can also calculate the minimal significant
hitting rate (p2 = 20%) in order to claim Scheme II is significantly
better than Scheme I when � = 0:05 and n = 150. Similarly, we can
apply the procedure to “stand 16 flow,” where p2, the hitting rate of
Scheme II, is around 16%, which is less than 20% and, therefore, is not
large enough to conclude that the functional variable “stand 16 flow”
is influential to the surface quality.

From this case study, we have the following observations.
First, FDA provides a new technique in the modeling of the process

variables in hot rolling processes. In this study, we successfully identi-
fied “flow rate of waterbox1” as an influential factor to the occurrence
of checkings. This result has been validated by the plant engineers. The
difference between the DC curves may provide intuitive guidance to
the industrial practice. For example, “flow rate of waterbox1” is the
first waterbox after the no-twist mill. This variable can be viewed as an
indicator of how the steel billet is cooled down after it comes out of the
no-twist mill. Obviously, the steel property will be greatly affected by
how fast and where the water flows to cool down the steel billet and,
thus, is deemed to be an important process variable. Fig. 3 also shows
that under abnormal conditions (Class B), no-twist mill waterbox flow
changes more dramatically than that of the normal conditions (Class
A). It is highly likely that the physical property of the steel surface is
weakened by the abrupt change of “flow rate of waterbox1” and, thus,
causes the generation of checkings in the later phase of the hot rolling
process. An immediate remedy is to investigate the no-twist waterbox
and stabilize the waterbox flow to improve the surface quality of the
steel billets.

Second, the hitting rate of Scheme II for “flow rate of waterbox1” is
25%, which improves the hitting rate from Scheme I by more than 60%.
It is well known that multiple factors will contribute to the surface de-
fects in the hot rolling process. It is very unlikely to reach an extremely
high hitting rate by considering only one process variable. Due to the
low hitting rate, this scheme cannot be used for quality prediction or
classification purpose. However, this is not a limitation of our method.
To a rolling steel company, it is much more valuable to identify the in-
fluential process variables than to predict the actual surface quality of
the steel billets. With the existing industrial knowledge, a process vari-
able can be quickly adjusted after it has been identified to be influential
to the surface quality, and the visual plot obtained from our analysis
may also provide the guidance for the process adjustments.

Third, in this paper, we only differentiate the steel billets into two
classes: the class without surface defects and the class with surface
defects. The class with surface defects could be further classified into
multiple classes if the information for the severity of surface defects of
each steel billet is available, which will definitely improve the accuracy
of the method.



IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 5, NO. 3, JULY 2008 561

Fig. 3. Visual plots for four process variables. (a) NTM entry speed. (b) NTM entry temperature. (c) Flow rate of waterbox 1. (d) Stand 16 flow rate.

IV. CONCLUDING REMARKS

The goal of this paper is to identify the key influential functional
process variables in hot rolling processes. Due to the high dimension-
ality and complexity of the functional variables, the traditional regres-
sion analysis and dimensional reduction techniques such as principal
components analysis are ineffective. In this paper, we apply the FDA
method to model these process variables. By integrating the rigorous
statistical testing and an important piece of engineering knowledge that
the fast change of a process variable tends to cause the surface defects in
the hot rolling process, we propose a new quantitative method to iden-
tify the influential process variables to the occurrences of the surface
defects. With the recently available surface quality measurements, this
method provides a link between the surface defect and the influential
functional process variables. A case study is implemented to demon-
strate its effectiveness in practice. The developed method can provide
guidelines for surface quality improvement of the hot rolling processes.
This method can also be used for the identification of influential func-
tional variables in other processes.

In this paper, we assume that the same number of measurements at
the same locations along the billet for each steel billet. This is not a lim-
itation to the proposed procedure. A simple translation method or a sys-
tematic curve registration method [5] can be used to “standardize” the

observations before using our developed procedure if different num-
bers of measurements or unevenly spaced measurements are obtained
for each steel billet. The choice of the sample size n for the test datasets
will slightly affect the performance of the proposed procedure. Ex-
tremely small or extremely large sample size will make the procedure
less effective. Although it is quite easy to choose a satisfactory sample
size manually after a few screenings, it might be interesting to study the
impact of sample size in a systematical way. This is our future research.

ACKNOWLEDGMENT

The authors would like to thank the editor and referees for their valu-
able comments and suggestions.

REFERENCES

[1] V. B. Ginzburg, High-Quality Steel Rolling: Theory and Practice.
New York: Marcel Dekker, 1993.

[2] OG Technologies, “Apparatus and method for detecting surface defects
on a workpiece such as a rolled/drawn metal bar,” U.S. Patent 6 950
546, 2005.

[3] A.I.S.I. Strategic Planning for Research and Development Committee,
Steel Industry Technology Roadmap, American Iron and Steel Insti-
tute, 2001.



562 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 5, NO. 3, JULY 2008

[4] N. Jin, S. Zhou, and T. Chang, “Identification of impacting factors of
surface defects in hot rolling processes using multi-level regression
analysis,” Trans. NAMRI/SME, vol. 32, pp. 557–564, 2004.

[5] A. Kneip and T. Gasser, “Statistical tools to analyze data representing
a sample of curves,” Ann. Statist., vol. 20, no. 3, pp. 1266–1305, 1992.

[6] K. Wang and T. Gasser, “Asymptotic and bootstrap confidence bounds
for the structural average of curves,” Ann. Statist., vol. 26, no. 3, pp.
972–991, 1998.

[7] A. Demmler and C. Reinsch, “Oscillation matrices with spline
smoothing,” Numerische Mathematik, vol. 24, pp. 375–382, 1975.

[8] J. Rice and B. W. Silverman, “Estimating the mean and covariance
structure nonparametrically when the data are curves,” J. Royal Statist.
Soc., Series B (Methodological), vol. 53, no. 1, pp. 233–243, 1991.

Toward Autonomous Excavation of Fragmented Rock:
Full-Scale Experiments

Joshua A. Marshall, Patrick F. Murphy, and Laeeque K. Daneshmend

Abstract—This paper presents the results and subsequent analysis of
full-scale excavation experiments aimed at developing a practical under-
standing of how actuator forces evolve during excavation and how they
relate to the interactions that occur between an excavator’s end-effector
and its environment. Our focus is on the excavation problem for frag-
mented rock, as is common in mining and construction applications. Based
on an analysis of the experimental data, an example admittance-type
autonomous excavation controller is postulated.

Note to Practitioners—This paper was motivated by the problem of au-
tonomously excavating a pile of fragmented rock using a load-haul-dump
(LHD) machine, as is common in underground hard-rock mining. In this
case, automation serves to remove human operators from hazardous en-
vironments underground, as well as to increase productivity by improving
utilization and reducing wear on the excavator. In this paper, we take a first
step toward the development of a system for autonomous excavation by per-
forming experiments using a ten-tonne capacity machine to excavate frag-
mented rock taken from an underground mine in Canada. By measuring
the status of various vehicle parameters during the excavation process, we
reveal a useful characterization of this process based on hydraulic cylinder
pressures.

Index Terms—Admittance control, hazardous environments, mining au-
tomation, robotic excavation.

I. INTRODUCTION

The invention of robotic excavation machines is of interest in the
mining and construction industries, where the aim is remove opera-
tors from hazardous environments, improve machine utilization and
productivity, and reduce maintenance costs [1], [2]. Autonomous (or
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Fig. 1. A LHD machine.

robotic) excavation is also of interest in planetary exploration missions
(e.g., on Mars), where excavation cannot be carried out by remote con-
trol [3], [4]. The research presented in this paper attempts to establish
an engineering basis for autonomous excavation by studying the oper-
ational parameters of a full-scale excavator driven by experienced op-
erators. Our focus is on excavation in fragmented rock, as is common
in mining and construction, using a load-haul-dump (LHD) excavation
machine (see Fig. 1).

What makes robotic excavation challenging is the nature of the
bucket-rock interactions. Performance is strongly influenced by the
conditions of interaction between the machine and its environment.
For example, the resistance faced by a bucket as it attempts to penetrate
a rock pile may vary significantly depending upon the properties of
the media (e.g., density and hardness), the rock pile geometry, and the
distribution of particle sizes and shapes. Indeed, it would be very diffi-
cult to predetermine the exact nature of future bucket-rock interactions
prior to the execution of any particular excavation operation.

A. Studies in Autonomous Excavation

The autonomous excavation problem has received attention from
several robotics researchers during the past two decades. For example,
in [5], it was suggested that the trajectory of an excavator’s bucket
through the rock pile should not have priority in a devised control
scheme, since the objective is to effectively fill the bucket, not to follow
a predetermined path.

A number of researchers have proposed the use of machine vision as
an enabling technology for autonomous excavation. In the work of Ji
and Sanford [6], a laboratory-scale excavation system was developed
that utilizes camera data for control and navigation. Petty et al. [7] con-
structed a scale-model system to mimic the motions of an LHD ma-
chine and developed different loading strategies depending on sensed
information about the rock pile. Similar work by Takahashi et al.[8]
employed a vision system to obtain images of the rock pile. In their
approach, these images are used to plan the excavation task based on
an estimated contour of the rock pile.

Under a pioneering Russian project, Mikhirev [9] formulated a set
of ideas relating to force, motion, and trajectory control for various
excavator mechanisms. Mikhirev advocated that measurement of the
resistive forces to excavation could be used as a signal for automatic
activation of the mechanism used of bucket rotation in the vertical plane
(i.e., motions of the dump cylinder for the LHD in Fig. 1).

More recently, researchers from the University of Arizona [3], [10]
have proposed an autonomous excavation system for front-end-loader
style machines that uses bucket force/torque feedback, fuzzy logic, and
neural networks for control. In their approach, a set of basic bucket
action sequences, typically used by human operators, was compiled for
use by the controller. A reactive approach, using fuzzy behaviors, was
designed to act on force/torque data in order to assess the excavation
status and determine an appropriate control input. Experimental results,
using a PUMA 560 arm, were reported.
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