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Variation-source identification has received considerable attention from the manufacturing quality improvement community. One
widely used method is based on a pattern matching procedure, which identifies process faults by comparing the fault symptom, which
is the principal eigenvector of the covariance matrix of the quality measurement, with fault signatures. The presence of unstructured
noise as well as the uncertainty due to sampling will cause the direction of the fault symptom to deviate from the corresponding fault
signature. The influences of these two effects on pattern matching procedures have previously been studied separately, by assuming
either the absence of unstructured noise or the availability of large samples. This paper developes a robust pattern matching procedure
that considers both effects simultaneously. Using a machining process as an illustrative example, the paper demonstrates that previous
pattern matching procedures can have a remarkably low identification capability when the assumptions are not strictly satisfied. By
contrast, our proposed method is more robust, maintaining a good identification probability, and would be a preferable tool for
root-cause identification in manufacturing quality improvement.
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1. Introduction

Process monitoring and control technology, which focuses
on the detection, identification, diagnosis, and elimination
of process faults, can help a company maintain on edge in
today’s highly competative market place. This is because it
can help to reduce process downtime, and hence, the oper-
ation costs. The rapid advances in sensing and information
technology that are currently being made mean that a large
amount of data is readily available that requires process
control methodologies to be developed for its interpreta-
tion.

Statistical Process Control (SPC) (Montgomery (2005)
and the references therein) is the primary tool used in prac-
tice to improve the quality of manufacturing processes. SPC
methods compare the statistical distribution of a process
output at normal (in control) working conditions with that
at current working conditions. If a large disparity is found,
then an alarm is signaled to indicate an abnormal (out
of control) condition. However, SPC is purely a statisti-
cal technique that is able to detect a departure from normal
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conditions but is unable to pin down the process fault that
caused the alarm. This process fault is often called the root
cause of the alarm by practitioners. The job of root-cause
identification is actually left to plant operators or quality
engineers.

In light of this limitation of SPC methods, considerable
research efforts have been expended on developing method-
ologies for root-cause identification. The basic approach
among the reported methodologies is to use a diagnostic
fault-quality model, which connects the measured prod-
uct quality characteristic to process faults. For example, in
a machining operation, dimensional features such as the
position, orientation, and size of a machined feature are
affected by deviations in process variables such as fixturing
errors and/or machine tool errors. In this example, the di-
mensional features are the product quality characteristics
and are treated as the outputs of a fault-quality model, while
the errors in the process variables are the process faults and
thus are the inputs to the model.

A wide variety of approaches can lead to the develop-
ment of a diagnostic fault-quality model. Ceglarek and
Shi (1996) linked process faults and the product quality of
assembly processes using principal components. A linear
fault-quality model of an explicit input-output format was
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presented for assembly processes by Apley and Shi (1998).
Their work was extended to multistage assembly processes
by Jin and Shi (1999) and Ding et al. (2002a). Djurdjanovic
and Ni (2001) and Zhou et al. (2003b) developed a linear-
deviation propagation model for multistage machining pro-
cesses.

All of the above models were developed on the basis
of governing physical laws in the corresponding processes.
They bear the same linear-model structure because the pro-
cess faults are assumed to be of a smaller magnitude as
compared to nominal product dimensions. A linear fault-
quality model can be generally expressed as:

y = Af + ε, (1)

where y is a n × 1 vector of product quality measurements,
A is a n × p constant system matrix determined by process/
product designs, f is a p × 1 random vector representing the
process faults, and ε is a n × 1 random vector representing
the influence of measurement noise, un-modeled faults, and
high-order nonlinear terms. Without loss of generality, we
can further assume that the columns of the A matrix are of
unit length. This can be achieved through a simple scaling
process. In this paper, we focus on variation-source identifi-
cation. Therefore, the process fault vector f is modeled as a
random vector to describe the variation errors, as opposed
to a mean-shift type of error in the process. Since the mean
of quality measurements can always be subtracted, it is also
assumed that the means of f and ε are zero.

After the fault-quality model is established, either statis-
tical estimation methods or pattern matching methods can
be used to identify which process fault has occurred based
on product quality measurements.

In estimation methods, the fault-quality model of equa-
tion (1) is treated as a linear mixed model. The variances
of the process faults (σ 2

f1
, . . . , σ 2

fp
) are the variance compo-

nents to be estimated in this mixed model (Searle et al., 1992;
McCulloch and Searle, 2001). Based on the mixed model,
Apley and Shi (1998) and Chang and Gossard (1998) used
ordinary least-squares to estimate the random input f̂ and
then calculate its variance as if f̂ was directly measured.
Zhou et al. (2004) used a maximum-likelihood estimator
and also provided the confidence intervals of the estimated
variance of f. Ding et al. (2005) compared different variance
estimation methods and provided guidelines on method se-
lection under different circumstances. Furthermore, Ding
et al. (2002b) and Zhou et al. (2003a) performed diagnos-
ability studies to identify the necessary conditions that need
to be satisfied for an estimation method to be applicable.

Although based on the same fault-quality model, the
pattern matching method is different from statistical es-
timation methods. The basic idea of the pattern matching
technique is illustrated in Fig. 1. First, based on the fault-
quality model, we can obtain the signatures of potential
faults. Then the pattern of an occurring fault is extracted
from measured data. Finally, the occurring fault can be
identified if there is a match between the patterns of the

Fig. 1. Outline of the pattern matching method.

fault symptom and the fault signature. In Equation (1), the
column vectors of A determine how a specific process fault
affects the product quality characteristics and thus they are
the fault signature vectors. Principal Component Analysis
(PCA) (Johnson and Wichern, 1998) is the major statistical
tool used to extract the fault symptom from measured data
in the pattern matching method.

Ceglarek and Shi (1996) developed a pattern matching
method for fixture fault diagnosis in automotive body as-
sembly processes. The fault signatures were defined based
on design information on the assembled part under faulty
fixture conditions. After that, the pattern matching tech-
nique was used to map the extracted fault symptoms from
measured data through PCA to the predefined fault signa-
tures. The authors assumed a structured noise (the covari-
ance matrix of ε, Σε, is diagonal) and a large sample size
(namely, the covariance matrix of measurements y, Σy, is
known). This method was extended by Rong et al. (2000)
to the compliant beam structure assembly model by con-
sidering the sample properties of the principal eigenvector
of Σy but keeping the structured noise requirement. Ding
et al. (2002a) studied the impact of an unstructured noise
under the large sample condition. They used a state space
model for multistage manufacturing processes and gener-
ated the fault signatures based on the model. A PCA-based
methodology was adopted to identify the single variation
source in the process.

The statistical estimation method and the pattern match-
ing method have different strengths. From a practicability
point of view, the pattern matching method is very intuitive
and possesses a clear geometric interpretation, which may
help practitioners to understand and eliminate the varia-
tion source. Thus, the pattern matching method is easy for
practitioners to implement and execute as compared with
statistical estimation methods. On the other hand, the sta-
tistical estimation method allows people to analyze the test
performance analytically because the testing statistics are
tractable. The available statistical estimation methods for
variation-source identification assume that the covariance
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matrix of the noise term ε is in the simple form σ2
εI. Un-

structured noise is not considered.
This paper focuses on an extension of the pattern match-

ing technique by considering both unstructured noise and
sample uncertainty in the matching. The proposed method
is robust and maintains a good identification probability.
Using a machining process as an illustrative example, the
paper demonstrates that current pattern matching proce-
dures can have a remarkably low identification probability
when the assumptions are not strictly satisfied. By contrast,
our proposed method is more robust, maintaining a much
higher identification probability, and is a preferable tool
for variation-source identification in manufacturing qual-
ity improvement.

This paper is organized as follows. In Section 2, we
present a robust pattern matching procedure for fault di-
agnosis. Section 3 uses a case study to illustrate the effec-
tiveness of the proposed technique. Finally, we conclude the
paper in Section 4.

2. Pattern matching techniques for root-cause
identification

2.1. Problem formulation and assumptions

The linear fault-quality model as defined in Equation (1) is
adopted in this paper. Assuming that the process fault f is
independent of system noise ε, we can obtain the following
from Equation (1):

Σy = AΣfAT + Σε, (2)

where Σf and Σε are the covariance matrices of f and ε,
respectively. Furthermore, it is usually assumed that process
faults (i.e., the elements in f) are independent of one another,
and hence, Σf is a diagonal matrix.

Without loss of generality, let us assume that the ith fault
occurs and only a single diagonal element of Σf, σ 2

i , is
nonzero. Then, we have:

Σy = σ 2
i aiaT

i + Σε, (3)

where ai is the ith column vector of A. If we multiply both
sides of Equation (3) by ai, we have Σyai = σ 2

i (aT
i ai)ai +

Σεai. If the components inεare independent of one another
and have the same variances, then Σε will have the simple
form σ2

εI, where σ 2
ε is the variance of the noise and I is an

identity matrix with appropriate dimension. Under these
conditions, we have:

Σyai = (σ 2
i (aT

i ai) + σ 2
ε )ai. (4)

Since σ 2
i (aT

i ai) + σ 2
ε is a scalar, ai is apparently an eigenvec-

tor of Σy .
The above analysis indicates that when the ith process

fault occurs, the eigenvector associated with the largest
eigenvalue of Σy, known as its principal eigenvector, should
match the ith column vector of A. Thus, the principal eigen-

vector of Σy is the fault symptom and will be used for root-
cause identification in the pattern matching method.

Theoretically, fault signature ai will exactly match the
principal eigenvector of Σy with a noise term where Σε =
σ 2
ε I. This type of noise term is called a structured noise, re-

ferring to its special covariance matrix structure. In reality,
not every noise term can be assumed to have such a sim-
ple covariance structure. In the presence of unstructured
noise, where Σε is not in the form of σ 2

ε I, the direction of
a fault symptom will deviate from the corresponding fault
signature. Another difficulty results from the fact that the
population covariance matrix Σy is never exactly known
and will have to be estimated from the sample covariance
matrix Sy of the measured data. When sampling from data,
the principal eigenvector of Sy is a random vector, mean-
ing that we will only know the sample of a fault symptom
instead of its exact value.

As stated in the Introduction, the influences of these
two effects on pattern matching procedures have previously
been studied separately, by assuming either the absence of
unstructured noise or the availability of large samples. Since
these two assumptions cannot always hold in actual manu-
facturing processes, we will develop a robust pattern match-
ing procedure by considering both the unstructured noise
effect and the sampling effect together in this paper. We list
our assumptions as follows:

1. The fault-quality relation can be adequately described
by Equation (1) and the constant matrix A is known.
The process faults and the system noises are assumed to
be independent of one another.

2. The covariance of ε is in a general form as Σε. Σε may
be unknown but the range of its eigenvalues is assumed
known.

3. One fault occurs at a time, meaning that no multiple
faults occur in the system simultaneously.

The rationale of assumption (2) is that ε is usually dom-
inated by measurement noise, thus the range of the eigen-
values represents the range of sensor accuracy that can be
obtained through the sensor vendor’s specification. Even
if ε comprises unmodeled faults and high-order nonlinear
residuals, an offline calibration could provide information
on the eigenvalue range of Σε. Assumption (3) is not very
restrictive because the probability of simultaneous multiple
faults is small in many cases. Moreover, whenever a fault
occurs, we need to identify and eliminate the fault rather
than wait until another fault occurs.

2.2. Robust Pattern Matching Technique

As mentioned in Section 2.1, it is unrealistic to assume
that Σε is in the form of σ 2

ε I, which can probably only
closely represent the case where identical measurement de-
vices are used to measure quality features. When different
measurement devices are used, the variances of the differ-
ent components in ε will be different. Moreover, the noise
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Fig. 2. The boundary for pattern matching of the columns of A.

term ε could comprise un-modeled faults and high-order
nonlinear residuals, which are more likely to be correlated
and makes a diagonal structure in Σε even less likely. For
this reason, it is more practical to study Σε in a general
structure.

In addition to disturbances due to unstructured noises,
sampling uncertainty in Sy makes the sample principal
eigenvector a random vector. Instead of checking if the
sample principal eigenvector is equal to the theoretical fault
signature in an exact and deterministic sense, we should es-
tablish a confidence boundary to see if they are equal in a
statistical sense.

Figure 2 illustrates the joint effects of the aforementioned
two kinds of uncertainty. Vector ai is a column vector of A,
which is the same as the principal eigenvector of AΣfAT

when the ith fault occurs. With the presence of an unstruc-
tured noise, the principal eigenvector of Σy, denoted as
v(1)

i (the subscript i means the ith fault occurs, while the
superscript(1) represents that it is the principal eigenvec-
tor), is not the same as ai. Instead, it will fall in a cone as
shown in Fig. 2. The boundary of the cone can be repre-
sented by the angle γc. The sample principal eigenvector of
Sy, denoted as us, will be different from v(1)

i due to sample
uncertainty. The final boundary for us can be illustrated by
the dashed-line as shown in Fig. 2. If the sample principal
eigenvector falls in the confidence boundary of a fault sig-
nature vector ai, we can claim that the corresponding fault
occurs. Note that Fig. 2 exaggerates the size of the region
for the sake of illustration. When the sample size is large
and the noise variance is small, the confidence range of us
is actually small.

2.2.1. Disturbance due to an unstructured noise
In this part we focus on the perturbation of an unstructured
noise on the eigenvectors of Σy. When the ith fault occurs,
the principal eigenvalue and eigenvector pair of AΣfAT , Σy,
and Sy are {λ(1)

f,i , ai}, {λ(1)
y,i, v(1)

i } and {l(1)
y,i , us}, respectively.

With the presence of an unstructured noise the principal
eigenvector (v(1)

i ) of Σy differs from ai and the boundary
of this difference is related to the additive noise covariance
matrix Σε.

A useful result regarding the perturbation boundary
caused by an unstructured noise is given by Ding et al.
(2002a): when only the ith fault occurs in the system (i.e.,

only λ
(1)
f,i , the principal eigenvalue of AΣfAT is nonzero) and

‖Σε‖2 ≤ λ
(1)
f,i /4, then:

dist(span{ai}, span{v(1)
i }) ≤

(
4

λ
(1)
f,i

√
λ2

max(Σε) − λ2
min(Σε)

)
,

(5)

where λmax(Σε) and λmin(Σε) are the largest and the small-
est eigenvalues of Σε, and dist(span{ai}, span{v(1)

i }) is the
distance (Golub and Van Loan, 1996) between the space
spanned by ai and v(1)

i respectively. The condition ‖Σε‖2 ≤
λ

(1)
f,i /4 means that the largest variance of the noise term is

four times smaller than the variance of the process fault,
which is not restrictive in practice.

Since ai, v(1)
i are two unit vectors (in the sense of

its 2-norm) in Rn, the distance between two subspaces
of span{ai}, span{v(1)

i } is equal to the sine of the angle
(�θ ) between ai and v(1)

i . That is, sin(�θ ) = dist(span{ai},
span{v(1)

i }) (The proof of this result can be found in the
Appendix). Now we have the following result:

�θ ≤ sin−1

(
4

λ
(1)
f,i

√
λ2

max(Σε) − λ2
min(Σε)

)
= γc. (6)

Obviously the angle between ai and v(1)
i can be calculated

by using cos(�θ ) = v(1)T
i ai. Its boundary will be denoted

by:

γc = sin−1
(

4

λ
(1)
f,i

√
λ2

max(Σε) − λ2
min(Σε)

)
,

hereafter. The above result indicates that the difference be-
tween ai and v(1)

i , represented by the angle �θ between them
(as shown in Fig. 2), is determined by the eigenvalue of
AΣfAT and the extreme eigenvalues of (Σε). We would also
like to point out that the boundary specified by Equation (6)
is a worst-case boundary.

Inequality (6) suggests that the perturbation bound-
ary between ai and v(1)

i depends on λ
(1)
f,i /λmax(Σε) and

λmax(Σε)/λmin(Σε). The value of λ
(1)
f,i /λmax(Σε) can be

somewhat regarded as the signal-to-noise ratio, while
λmax(Σε)/λmin(Σε) indicates the imbalance in accuracy as-
sociated with different measurement devices. With an in-
crease in signal-to-noise ratio, the perturbation bound-
ary will get smaller. For instance, if λmax(Σε) = 0.030,
λ

(1)
f,i /λmax(Σε) is 10, and λmax(Σε)/λmin(Σε) is around ten,

the perturbation boundary (i.e., the angle) will be around
20◦. However, if λ

(1)
f,i /λmax(Σε) is around 50, meaning the

fault magnitude is five times larger than before, the pertur-
bation angle will reduce to 5◦ or so. On the other hand,
with a higher imbalance among eigenvalues of Σε, the per-
turbation boundary will become larger. In the case that all
eigenvalues ofΣε are the same, there will be no perturbation
on v(1)

i .
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2.2.2. Disturbance due to sampling uncertainty
This section presents a testing procedure for the principal
eigenvector of a sample covariance matrix. We use the same
notation as before that us and v(1)

i are the principal eigen-
vector of Sy and Σy, respectively, when the ith fault occurs
in the system. According to Murihead (1982), if λ1

yi is a
distinct eigenvalue (which is true in our case when a sin-
gle fault occurs) and y follows a normal distribution, then
(N -1)1/2(us − v(1)

i ) asymptotically follows a n-variate nor-
mal distribution N(0,Γ), where:

Γ = λ
(1)
y,i

n∑
j=2

λ
(j)
y,i(

λ
(1)
y,i − λ

(j)
y,i

)2 v(j)
i v(j)T

i , (7)

N is the sample size, and n is the dimension of measure-
ment in Equation (1). Apparently, due to the sampling un-
certainty, different realizations of us will generate a hyper-
dimensional ellipsoid centered around the corresponding
vector v(1)

i . Following the above result, we know the limit-
ing distribution of Wi ≡ (N − 1)(v(1)

i − us)T (l(1)
y,i S

−1
y − 2I +

1/l(1)
y,i Sy)(v(1)

i − us) is χ2
n−1 (Murihead, 1982).

Given one fault occurring in the system, from the mea-
surements y we can get the fault symptom vector us, which is
the principal eigenvector of Sy . The objective of variation-
source identification is to find out which one of p potential
faults, represented by the p column vectors of A, occurred
in the system based on the value of us. To reach this goal, a
series of asymptotic hypothesis tests can be formulated as
follows. If we denote vs as the principal eigenvector of the
population covariance matrix of the current quality mea-
surements and v(1)

k as the principal eigenvector of Σy when
the kth fault occurs in the process, then for k = 1, 2, . . . , p,
we can formulate the test as:

H0 : vs = v(1)
k ,

H1 : vs �= v(1)
k .

The testing statistic can be developed as follows based on
Equation (7):

Wk ≡ (N − 1)
(
v(1)

k − us
)T

(
l(1)
y,kS−1

y − 2I + 1

l(1)
y,k

Sy

)(
v(1)

k − us
)
.

(8)

As indicated above, it is known that Wk asymptotically fol-
lows the distribution of χ2

n−1 under the null hypothesis. If
Wk > χ2

n−1(α), where χ2
n−1(α) is the upper 100α% point of

the χ2
n−1 distribution, we reject the null hypothesis, meaning

that v(1)
k is not the principal eigenvector of the current Σy .

Otherwise, we accept the null hypothesis, meaning that v(1)
k

is the principal eigenvector of the current Σy , and thus, we
know that the kth fault occurred in the system.

A difficulty in conducting this test is that the values of
v(1)

k , k = 1, 2, . . . , p, are unknown. A robust matching pro-
cedure is developed in the next section to deal with this
difficulty.

Fig. 3. The method to identify the boundary of v(1)
i .

2.2.3. A robust pattern matching procedure
A robust pattern matching procedure that considers the ef-
fects of noise perturbation and also sampling uncertainty is
developed in this section. Consider two faults, represented
by ai and aj, in Fig. 3. Vectors ai and aj are the fault sig-
nature vectors from matrix A. Due to the perturbation of
unstructured noises, there are two cones centered around
ai and aj, respectively, within which the eigenvectors of Σy,
v(1)

i and v(1)
j , will fall. Once measurement data are collected,

the fault symptom vector us, the principal eigenvector, can
be calculated from Sy.

We want to identify which fault occurs exactly. There
are two cases: (i) when us falls into either one of the two
cones; and (ii) when us falls outside both cones. For the
first, because us falls within the confidence boundary of the
population covariance matrices, it means that the corre-
sponding fault occurs. The decision rule is then simple and
is the same as if there is no sampling uncertainty, namely,
we can immediately claim that a fault represented by either
ai or aj, whichever is applicable, occurs. For the second case,
we need to further calculate a test statistic similar to that in
Equation (8) to decide which fault has occurred.

However, due to the perturbation from unstructured
noise ε, we do not know the precise position of v(1)

k , k =
1, 2, . . . , p. Instead we only know the worst-case bound-
ary, within which v(1)

k falls. One straightforward approach
would be using the worst-case boundary as the position of
v(1)

k . However, a simple numerical study shows that the test
statistic in Equation (8) using a worst case v(1)

k (i.e., using
the value on the worst-case boundary) often yields a very
large Wk value so that the null hypothesis that v(1)

k is the
principal eigenvector of Σy is always rejected and a high
misidentification rate results.

In order to reduce the misidentification rate, we adopt
a different approach to locate v(1)

k for testing Equation (8).
Instead of using a boundary vector, we try to find a vec-
tor located within the hyper-dimensional cone (including
the boundary) that can minimize the Wk value. Then this
vector is substituted into Equation (8) as v(1)

k to calculate
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W ∗
k . A typical nonlinear programming problem to find an

appropriate v(1)
k can be formulated as follows:

Objective: W ∗
k ≡ min

v(1)
k

(N − 1)
(
v(1)

k − us
)T

(
l(1)
y,kS−1

y − 2I + 1

l(1)
y,k

Sy

)(
v(1)

k − us
)
,

Constraints: v(1)T
k v(1)

k = 1

�θk = cos−1 (
v(1)T

k ak
) ≤ γc

In the above formulation, the objective function is to find
a vector v(1)

k that minimizes Wk, while satisfying a set of
constraints. The constraints mean that v(1)

k should remain
as a unit vector and the angle between v(1)

k and ak should be
smaller than the worst-case boundary range γc.

Based on the Kuhn-Tucker conditions (Taha, 1992), we
can convert the inequality constraint into an equality con-
straint and calculate the solution of v(1)

k . In our numerical
study, we use the fmincon function in the Matlab software
to solve this nonlinear programming problem. After find-
ing the optimal v(1)

k , the final step is to calculate the value
of W ∗

k and compare this value with the upper 100α% point
of the χ2

n−1 distribution.

Our decision rule using the above optimized v(1)
k and W ∗

k
follows what is previously stated: if the W ∗

k is not greater
than the critical value, we claim that the corresponding fault
occurs, otherwise we claim this fault does not occur. This
conclusion is conservative in terms of fault identification.
Because the vector that minimizes the W ∗

k statistic might
not be the true v(1)

k , we are more inclined to conclude that
a fault is indeed occurring. Subsequent investigations are
still needed to verify the conclusion. From our experiences,
we find that plant engineers and management welcome this
conservation. They would prefer a small misidentification
rate and are very cautious about any potential signs of sig-
nificant process faults because of the very high warranty
cost associated with quality problems.

Under some conditions, for example, when the angle be-
tween two signature vectors ai and aj is quite small, our
decision rule may lead to the conclusion that both of these
two faults occurred. This problem of “fault isolation,” i.e.,
how to distinguish among two or more faults, is of consid-
erable interest and the isolation condition under which all
faults are uniquely identifiable worth further investigation.

After identifying the ith process fault, we can further es-
timate the variance magnitude of the fault. We have (Golub
and Van Loan, 1996):

λ
(1)
f,i + λmin(Σε) ≤ λ

(1)
y,i ≤ λ

(1)
f,i + λmax(Σε). (9)

Based on Equation (9), we can get the range of eigenvalue
of AΣfAT as follows:

λ
(1)
y,i − λmax(Σε) ≤ λ

(1)
f,i ≤ λ

(1)
y,i − λmin(Σε). (10)

From Equation (4), we know that σ 2
i (aT

i ai) is the eigenvalue
of AΣfAT corresponding to the process fault. Substituting
λf,i = σ 2

i (aT
i ai) into Equation (10) and using the average of

the upper and lower bounds in Equation (10) as an approx-
imation for σ 2

i , we then estimate the variation magnitude
of a fault as:

σ 2
i ≈ 1

2(aT
i ai)

{[
l(1)
y,i − λmin(Σε)

] + [
l(1)
y,i − λmax(Σε)

]}
, (11)

where λ
(1)
y,i is substituted by its sample version l(1)

y,i . Appar-
ently, if the variance of the noise is relatively small as com-
pared to that of a process fault, which is usually the case,
the approximation error will be small. The reason for this is
that when the largest and smallest eigenvalues ofΣy become
smaller, so does the range stated in Equation (10).

To summarize, the proposed pattern matching procedure
is listed as follows.

Step 1. A fault-quality model y = Af + ε is developed.
Based on the model, fault signature vectors ak,
k = 1 . . . , p, are obtained from the columns of A.

Step 2. The multivariate measurements y of the product
quality features are obtained during production.
The sample size is N and the dimension of the mea-
surements is n.

Step 3. Based on y, calculate the sample covariance matrix
Sy and its principal eigenvector us using PCA.

Step 4. Estimate λmax(Σε) and λmin(Σε) from an analysis
of the accuracy specification of the measurement
system. Based on Equation (6), we can calculate γc.
Here we often need to substitute λ

(1)
f,i with the tol-

erance specification of the corresponding process
variable if the precise value of λ

(1)
f,i is not yet known.

Then, we calculate the angles �θk between ak and
us, k = 1 . . . , p. If all of the angles are larger than
γc, go to next step, otherwise go to Step 6.

Step 5. Select a significance level α × 100%. For the non-
linear programming problem, we find the optimal
value of v(1)

k , k = 1 . . . , p, and calculate the value
of W ∗

k , k = 1 . . . , p. If all the values are larger than
χ2

n−1(α), we can claim that none of the known faults
occurs, otherwise go to next step.

Step 6. If �θk ≤ γc or W ∗
k ≤ χ2

n−1(α), we can claim that the
kth fault, represented by the kth column of matrix
A, occurs. After that, the variation magnitude of
the fault can be calculated using Equation (11). If
all W ∗

k , k = 1 . . . , p, are larger than χ2
n−1(α), then

we claim that none of the known faults occur.

3. Case study

3.1. Introduction to the experimental machining process

The manufacturing process considered here is a three-stage
machining process. The product is a V-6 automotive engine
head. Its key features are shown in Fig. 4.
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Fig. 4. The final product and its key features: (a) the joint face of the engine head; and (b) the cover face of the engine head.

The key features include the cover face, joint face, da-
tum locating holes (H101 and H104 in Fig. 4), the slot on
the cover face, and extra holes on the cover and joint face
(H101–H108, H451–H458, S1–S12 in Fig. 4). Besides these
features, X1, X2, X3, Y1, Y2, Z are the initial locating points
on the raw casting workpiece. They are used as datum for
the initial cutting. Each operation and corresponding da-
tum setup is shown in Fig. 5.

In this process, the key dimensions of the engine head are
measured on a Coordinate Measurement Machine (CMM).
A total of 15 (or 16) points on the joint (or cover) face
are measured to determine the quality of the machining
operation. These measurement points are evenly distributed
on the two surfaces. Therefore, y will be a 31×1 vector (i.e.,
n = 31), consisting of the deviations at 15 points on the
cover face and 16 points on the joint face.

A11 =
⎡
⎣−0.5402 −0.6455 −0.2664 0.0683 0.5158 0.8555 0.9902 1.1863 1.3106 1.0177 0.6394 0.3403 0.0530 −0.0820 −0.2776

0.9690 0.5991 0.2203 −0.1140 −0.5612 −0.9005 −0.7058 −0.4225 −0.2428 0.1052 0.4597 0.7585 1.0455 0.8192 0.5367
0.5711 1.0464 1.0461 1.0458 1.0453 1.0450 0.7156 0.2362 −0.0678 −0.1229 −0.0991 −0.0988 −0.0985 0.2628 0.7409

⎤
⎦

T

,

A22 =
⎡
⎣−0.6349 −0.4590 −0.0332 0.2510 0.6955 1.0215 1.1372 1.1155 0.9048 0.6472 0.5864 0.3875 0.0777 −0.1490 −0.4063 0.0776

0.9602 0.6817 0.2556 −0.0288 −0.4736 −0.5857 −0.5031 −0.3477 −0.1368 0.1210 −0.0142 0.3998 0.7098 0.9368 0.9339 0.4496
0.6747 0.7773 0.7776 0.7778 0.7781 0.5641 0.3659 0.2322 0.2320 0.2318 0.4279 0.2127 0.2124 0.2123 0.4725 0.4728

⎤
⎦

T

.

Based on the CMM measurements of these features from
the machining operations, potential process faults are iden-

Fig. 5. The operation sequence.

tified as the locating pin position errors of the first and
the second stages of the process. The variation source is
then a 6 × 1 vector (i.e., p = 6), where the first three ele-
ments correspond to three pins at the first stage and the last
three elements correspond to the three pins at the second
stage.

A fault-quality model (y = Amfm + ε) bearing the same
linear structure as Equation (1) can be established from a
sophisticated kinematic analysis (please refer to Zhou et al.
(2003b) for details). The coefficient matrix Am of this spe-
cific process is given as:

Am =
[

A1

A2

]
, (12)

where A1 = [A11 0], A2 = [0 A22], and

Please note that the lengths of the columns in the
coefficient matrix are not one in Equation (12).
However, a simple scaling yields y = Amfm + ε =
(AmL−1)(Lfm) + ε = Af + ε, where A = AmL−1, f = Lfm,
L = diag(L1, L2, L3, L4, L5, L6), and Li is the length of the
ith column of matrix Am (i = 1, 2, . . . , 6), and thus the
length of each column of A is one. In this way, we can treat
Lfm as the standardized variation source f. The six column
vectors of A are the signature vectors of the six potential
faults.

In this example, the noise ε is dominated by errors associ-
ated with the measurement device. Since the orientations of
a CMM probe are different when it is used to measure either
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the joint face or the cover face, the variances of the mea-
surement errors are therefore different for the measurement
points on these two different surfaces. Based on engineer-
ing analysis, the standard deviations of components in ε are
between 0.008 and 0.015 mm.

Furthermore, from the design specification of our fixture
system, the locating tolerance is around 0.050 mm. If the
standard deviation of components in f is larger than this tol-
erance, we deem that the corresponding fault occurs. Next
we will perform root-cause identification using the pattern
matching technique based on this fault-quality model and
the CMM measurements.

3.2. Pattern matching for root-cause identification in the
machining process

3.2.1. Comparison of the developed technique
and previously available techniques

Given that the standard deviations of the components in
ε are between 0.008 and 0.015 mm, we randomly generate
a positive-definite matrix with diagonal elements falling in
the range from 64 − 225 × 10−6 mm2. Then, we use this
matrix as the noise covariance matrix, where the largest and
smallest eigenvalues, λmax(Σε) and λmin(Σε), can be easily
computed. We consider the situation that the third fault
has occurred. The variations of f are specified accordingly
as:

var f(k) =
{

c1 mm2, k = 3,

c2 mm2, k �= 3,

where c1 is larger than 2.5 × 10−3, the square of the locating
tolerance, and c2 is smaller than this value. The theoreti-
cal chi-square critical value of Equation (8) is χ2

30(0.01) =
50.892 and χ2

30(0.05) = 43.773 at significance levels of 0.01
and 0.05, respectively.

Table 1. Misidentification rates of the three pattern matching methods

γc (degrees)

0 0.91 2.42 4.06 9.94 15.62

Mean (Std.) Mean (Std.) Mean (Std.) Mean (Std.) Mean (Std.) Mean (Std.)
N E (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

50 e1 100 (0.000) 100 (0.000) 100 (0.000) 96.49 (0.555) 66.81 (1.549) 45.67 (1.917)
e2 86.07 (0.976) 86.09 (0.768) 86.31 (0.907) 86.16 (0.819) 87.65 (0.788) 88.73 (0.764)
e3 81.43 (1.084) 33.64 (1.538) 10.02 (1.002) 0.46 (0.182) 0.03 (0.051) 0.01 (0.022)

100 e1 100 (0.000) 100 (0.000) 99.95 (0.082) 76.19 (1.618) 29.66 (1.476) 14.87 (1.121)
e2 29.49 (1.633) 29.31 (1.617) 29.86 (1.522) 31.14 (1.477) 34.53 (1.562) 37.41 (1.662)
e3 22.15 (1.383) 1.07 (0.375) 0.17 (0.114) 0.00 (0.016) 0.00 (0.000) 0.00 (0.000)

400 e1 100 (0.000) 99.89 (0.125) 69.92 (1.714) 7.19 (0.693) 0.25 (0.181) 0.03 (0.065)
e2 3.78 (0.658) 3.88 (0.637) 3.91 (0.615) 6.07 (0.734) 10.42 (0.952) 14.26 (1.180)
e3 2.67 (0.590) 0.01 (0.022) 0.00 (0.000) 0.00 (0.000) 0.00 (0.000) 0.00 (0.000)

1000 e1 100 (0.000) 95.71 (0.583) 19.54 (1.090) 0.07 (0.091) 0.00 (0.000) 0.00 (0.000)
e2 2.64 (0.471) 2.72 (0.533) 2.79 (0.510) 8.01 (0.909) 21.25 (0.982) 33.19 (1.189)
e3 1.42 (0.308) 0.00 (0.000) 0.00 (0.000) 0.00 (0.000) 0.00 (0.000) 0.00 (0.000)

First, we would like to compare the misidentification
rates of the proposed method with two prior methods de-
veloped by Ding et al. (2002a) and Rong et al. (2000) re-
spectively. The former method considers the perturbation
of unstructured noises but not the sampling uncertainty,
whereas the latter considers sampling uncertainty in the
absence of unstructured noises.

We conducted 1000 replicates of the fault identification
using the aforementioned three procedures for a set of
combinations of sample size N and perturbation angle γc.
Table 1 lists the resulting means and standard deviations of
the misidentification rates for different procedures at a 1%
significance level. The misidentification rates are defined as
the rate of the number of misidentification cases over the
total number of tests (i.e., 1000 replications). We denote by
e1, e2, and e3 the misidentification rate obtained using the
procedure of Ding et al. (2002a), Rong et al. (2000), and
by this current paper, respectively. The mean and standard
deviation values of the misidentification rate are calculated
based on 40 iterations.

From the table we can observe the following.

1. The procedure of Ding et al. (2002a) results in very high
misidentification rates when the sample size is small. For
instance, the mean of e1 is nearly 100% for a sample size
as high as N = 1000 when γc < 2.42◦. The misidentifi-
cation rate e1 depends on the value of γc; given the same
sample size, the larger the γc, the smaller the e1. This is
understandable because γc provides a worst-case bound-
ary and a larger γc can help in offsetting disturbances
from sampling uncertainty. When a smaller sample size
is used such as N = 50, using the procedure of Ding
et al. (2002a) we will still have a large misidentification
rate even for a γc as large as 15.62◦. Too large a γc is not
preferable because it will allow the worst-case bound-
aries for different faults to overlap. On the other hand, if
we have a large N (say N = 1000), the misidentification
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rate will indeed reduce to zero provided that there is a
reasonable γc size (say γc > 4.06◦).

2. The procedure of Rong et al. (2000) results in a misiden-
tification rate that increases very rapidly when γc is
nonzero. This is particularly obvious for a large sample.
The reason for this is that their method uses ak instead
of v(1)

k in the statistic Wk in Equation (8). When γc in-
creases, the deviation of ak from v(1)

k tends to increase
and thus make the value of Wk larger. Therefore, we will
be inclined to reject the hypothesis that the kth fault oc-
curs. Given the same boundary γc, e2 has a decreasing
tendency when the sample size increases.

3. Using the procedure proposed in this paper, the misiden-
tification rate is always smaller than the other two meth-
ods. In fact, except for the cases where γc = 0, the pro-
posed method will have a near-zero misidentification
rate. For γc = 0, using the procedure proposed in this
paper will be equivalent to using the procedure in Rong
et al. (2000) and e3 is almost exactly the same as e2 under
that condition.

We can also find that the standard deviations of the
misidentification rates of our method are similar to the
other two methods and decrease consistently with increas-
ing γc and N.

Usually, a low misidentification rate is accompanied by a
high false alarm rate, which is the probability of identifying
a normal working condition as a faulty working condition.
Since we adopt a conservative approach to find W ∗

i for
diagnosis, it will not be surprising if the false alarm rate of
the proposed method is higher than the other two methods.
In this study, we used the same example as above but change
the variances of the elements of f to be c1 = 20 × 10−4 and
c2 = 2 × 10−4, both of which are smaller than the 2.5 ×
10−3 tolerance level that corresponds to the case that no
fault occurs. We again replicated our numerical study 1000

Table 2. False alarm rates of three pattern matching methods

γc (degrees)

0 0.91 2.42 4.06 9.94 15.62

Mean (Std.) Mean (Std.) Mean (Std.) Mean (Std.) Mean (Std.) Mean (Std.)
N δ (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

50 δ1 0 (0.000) 0 (0.000) 0 (0.000) 0 (0.000) 5.05 (0.169) 14.83 (0.127)
δ2 2.16 (0.183) 2.18 (0.188) 2.13 (0.160) 2.08 (0.158) 2.08 (0.123) 2.02 (0.099)
δ3 2.79 (0.182) 6.62 (0.249) 11.44 (0.290) 15.79 (0.099) 16.72 (0.025) 16.85 (0.067)

100 δ2 0 (0.000) 0 (0.000) 0 (0.000) 0.03 (0.020) 14.75 (0.164) 16.66 (0.015)
δ2 11.58 (0.261) 11.66 (0.278) 11.67 (0.311) 11.77 (0.242) 11.58 (0.270) 11.44 (0.292)
δ2 12.30 (0.246) 14.90 (0.172) 16.53 (0.036) 16.66 (0.014) 16.67 (0.000) 16.67 (0.000)

400 δ2 0 (0.000) 0 (0.000) 0.17 (0.052) 10.77 (0.237) 16.67 (0.000) 16.67 (0.000)
δ2 16.04 (0.097) 16.02 (0.068) 16.00 (0.064) 16.00 (0.076) 15.89 (0.096) 15.74 (0.130)
δ2 16.29 (0.070) 16.66 (0.006) 16.67 (0.000) 16.67 (0.000) 16.67 (0.000) 16.67 (0.000)

1000 δ2 0 (0.000) 0 (0.000) 7.98 (0.267) 16.56 (0.036) 16.67 (0.000) 16.67 (0.000)
δ2 16.25 (0.078) 16.26 (0.088) 16.25 (0.070) 16.22 (0.062) 15.91 (0.092) 15.56 (0.146)
δ2 16.39 (0.068) 16.67 (0.000) 16.67 (0.000) 16.67 (0.000) 16.67 (0.000) 16.67 (0.000)

times and list the resulting means and standard deviations
of the false alarm rates in Table 2, at a 1% significance level,
where the false alarm rate δ is defined as the number of
false alarms over the total number of tests (1000 replicates).
Similarly to the notation used for misidentification rate,
δ1, δ2, and δ3 represent the fault alarm rates of the three
investigated methods. As in Table 1, the mean and standard
deviation values of the false alarm rates are calculated based
on 40 iterations.

From this table we find that δ3 is larger than δ1 and δ2
under almost all circumstances. As explained above, this
is not surprising. However, the false alarm rate using our
proposed procedure is not alarmingly high. When either
there is an unstructured noise disturbance (say, γc > 4.06◦)
or the sample size is relatively large (say, N > 400), the false
alarm rate using our method is quite comparable with the
other two.

Combining the results for the misidentification rate and
false alarm rate, we find that our proposed method gains sig-
nificantly in identification power while giving slightly more
false alarms. Overall, the proposed procedure is more robust
in identifying the occurring fault and is a more preferable
tool for root-cause identification.

Finally, we show the estimation of the fault magnitudes
in Table 3. The fault magnitude is estimated under the fol-
lowing setting: N = 400 and the noise covariance matrix is
fixed at λmax(Σε) = 3 × 10−4 and λmin(Σε) = 10−6 . Each
time, we increase the variance level of one element in f to
be ten times larger than the other elements in f so that this
element becomes an outstanding fault. Then, we use Equa-
tion (11) to estimate its magnitude. This same simulation is
repeated for all p elements in f. Namely, the variations of f
are defined as follows:

var f(k) =
{

2 × 10−2 mm2 k = i
2 × 10−3 mm2 k �= i

, i = 1 . . . p.
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Table 3. The estimated values of the fault magnitudes
(×10−2 mm2)

Occurring fault

1 2 3 4 5 6

Magnitude 2.035 2.055 1.995 2.075 2.075 2.015

From Table 3, one can see that the estimated magnitudes
for all p faults are very close to the true value, which is
2 × 10−2 mm2.

3.2.2. The impact of fault magnitude on W ∗
k

In this subsection, we keep the noise covariance matrix the
same as in section 3.2.1, but test three different fault magni-
tudes in order to illustrate its impact on W ∗

k . In all cases, we
assume that only the third fault occurs. The three cases are:
(i) var f(3) = 5 × 10−3 mm2 ; (ii) var f(3) = 1 × 10−2 mm2;
and (iii) var f(3) = 2 × 10−2 mm2. The variances of the
other components in f remain at 2 × 10−3 mm2.

The W ∗
k values were replicated 1000 times for each case.

The W ∗
k listed in the following tables are the 95th and 99th

percentile values of the W ∗
k values obtained from all repli-

cates. The sample size N was chosen to be 50, 100, 400,
or 1000. When the fault magnitude changes, the worst-case
boundary γc will change accordingly. The overall results
are listed in Table 4, where a zero W ∗

k means that the fault
symptom vectors always fall inside the corresponding cones
for all replicated tests. The values smaller than the corre-
sponding thresholds are marked in bold in the table.

Apparently, when the fault magnitude gets larger, the γc
due to the perturbation of unstructured noise will decrease.
For a given sample size, as the fault magnitude increases, the
W ∗

k values associated with a non-faulty variable (i.e., k �= 3)

Table 4. The W ∗
k values for the three studied cases

95th percentile 99th percentile

N W ∗
1 W ∗

2 W ∗
3 W ∗

4 W ∗
5 W ∗

6 W ∗
1 W ∗

2 W ∗
3 W ∗

4 W ∗
5 W ∗

6

Case 1 γc = 37.41◦
50 41.91 42.58 3.54 34.41 34.42 47.00 58.25 66.64 6.12 51.37 49.48 72.09

100 62.40 56.38 1.35 47.68 46.62 66.53 87.33 70.92 1.52 68.38 72.43 87.28
400 146.26 141.93 0 115.49 114.47 190.83 293.78 291.33 0 248.81 240.13 425.06

1000 293.78 291.33 0 248.81 240.13 425.06 343.71 323.35 0 292.72 277.52 472.26
Case 2 γc = 9.94◦

50 275.34 261.97 2.90 202.83 212.02 252.1 357.65 337.71 5.19 260.72 298.77 335.63
100 1229.6 1208.8 1.01 930.15 895.8 1147.1 528.92 492.62 3.53 413.45 416.59 506.08
400 1390.9 1393.9 1.01 1066.4 1018 1272.4 1390.9 1393.9 1.01 1066.4 1018 1272.4

1000 2846.5 2724.2 0 2049 2048.1 2587.1 3186.1 3034 0 2317.4 2228.6 2727.6
Case 3 γc = 4.06◦

50 633.65 613.83 5.26 522.64 504.61 610.01 810.32 845.16 8.80 668.17 639.75 742.43
100 1027 994.36 2.81 837.69 808.04 983.02 1275.3 1247.4 4.87 959.23 978.96 1152.6
400 3392.6 3221.2 1.27 2578.3 2540.1 3065.7 3797.3 3553.8 3.22 2947 2834.9 3255.7

1000 7868.3 7641.6 0.17 6005.9 5924.2 7063.1 8392.9 8335 0.17 6553 6433.2 7426.9

increase very fast, whereas the W ∗
3 values are smaller than

the corresponding thresholds and change in a small range.
When the sample size increases, our method is more effec-

tive in fault identification, just as expected. Given the same
variation of f(3), when the sample size increases, the value
of W ∗

3 decreases sharply, while other W ∗
k (k �= 3) values

will actually increase, which makes the fault identification
easier.

When the sample size is relatively small as compared to
the dimension of the measurement (n = 31) and the fault
magnitude is not significantly greater than other elements
in f, the fault identification could be more difficult. For
instance, when the fault magnitude is 5 × 10−3 mm2 and
N = 50 (the first row of the case 1 data for the 99th per-
centile in Table 4), not only W ∗

3 but also W ∗
5 is smaller

than χ2
30(0.01). As a result, we are not able to specifi-

cally determine which fault occurred or if both of them
did. The phenomenon is more apparent when we use the
95th percentile value of W ∗

k (see the first row of the case 1
data for the 95th percentile in Table 4). In order to en-
sure the effectiveness of the proposed method, the sam-
ple size should be large enough. For our case, the pro-
posed method will achieve a satisfactory result when the
sample size is larger than 100. When the sample size is
50, the proposed method can identify a fault of a rela-
tively large magnitude, say, when var f(3) is greater than
1 × 10−2 mm2.

3.2.3. The impact of noise magnitude on W ∗
k

This subsection discusses the impact of different noise vari-
ances on W ∗

k . The variation of f is specified as,

var f(k) =
{

2 × 10−2 mm2 k = 3,

2 × 10−3 mm2 k �= 3.
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We still assume that the third fault occurs, the same as
in the previous sections. Four cases are considered corre-
sponding to different noise covariance structures and the
largest and the smallest eigenvalues associated with each
case are: (i) λmax(Σε) = 9 × 10−5 and λmin(Σε) = 6 × 10−5;
(ii) λmax(Σε) = 2.4 × 10−4 and λmin(Σε) = 1.6 × 10−4;
(iii) λmax(Σε) = 3 × 10−4 and λmin(Σε) = 10−6; and (iv)
λmax(Σε) = 4 × 10−4 and λmin(Σε) = 1 × 10−7. The W ∗

k
values were calculated for N = 50, 100, 400, and 1000,
respectively. The overall results are listed in Table 5. Again,
the values smaller than the corresponding thresholds
are marked in bold in the table. We only show the 99th
percentile values in this table because the 95th percentile
values have the same characteristics when the angle γc is
not large (in Table 5, γc ranges from 0.91◦ to 5.42◦).

Comparing cases (i) and (ii) where the λmax(Σε)/λmin(Σε)
ratios are the same, we find that the perturbation bound-
ary γc will increase from 0.91◦ in case (i) to 2.42◦ in case (ii)
when the ratio of λf,i/λmax(Σε) decreases from 188.3 in case
(i) to 70.6 in case (ii). This effect is similar to the situation
that a fault magnitude decreases while the noise magnitude
is kept the same. When γc increases, meaning the optimiza-
tion range will be accordingly enlarged, W ∗

k will decrease.
Moreover, when the sample size increases, W ∗

3 will decrease
but the other W ∗

k (i �= 3) values will increase. This result in-
dicates that a larger ratio of λf,i/λmax(Σε) or a larger sample
size will make the fault identification easier.

Comparing cases (iii) and (iv), where the ratio of
λmax(Σε)/λmin(Σε) are made significantly different (300 in
case (iii) compared to 4000 in case (iv)), we find that an
increasing λmax(Σε)/λmin(Σε) will enlarge the perturbation

Table 5. The W ∗
k values for the four studied cases

N W ∗
1 W ∗

2 W ∗
3 W ∗

4 W ∗
5 W ∗

6

Case 1 γc = 0.91◦
50 887.92 832.09 13.619 702.69 687.22 813.77

100 1215.2 1322 12.012 1033.3 982.78 1127.5
400 3859.8 3803.6 10.777 3045.6 3176.9 3449.1

1000 8612.6 8625.4 8.5097 7219.2 7491.1 7814.9
Case 2 γc = 2.42◦

50 821.4 739.83 18.294 607.47 662.58 697.24
100 1192.7 1113.1 10.858 939.06 982.8 1099.8
400 3406.8 3471.7 5.8144 2818.8 2803.8 3236.4

1000 7907.2 7752.8 3.5624 6299.9 6282.9 7241.9
Case 3 γc = 4.06◦

50 810.32 845.16 8.8074 668.17 639.75 742.43
100 1275.3 1247.4 4.8704 959.23 978.96 1152.6
400 3797.3 3553.8 3.2185 2947 2834.9 3255.7

1000 8392.9 8335 0.1719 6553 6433.2 7426.9
Case 4 γc = 5.42◦

50 834.96 737.71 6.1689 684.41 673.56 673.56
100 1203.8 1204.9 3.6969 979.99 986.79 1093
400 3598.9 3405.1 0.0477 2880.9 2921.6 3199.9

1000 8040.7 7823.3 0 6569.7 6508.8 7173.8

boundary γc (4.06◦ in case (i) compared to 5.42◦ in case
(ii)). Accordingly, W ∗

3 will decrease for a given sample size
and the probability to identify a fault using our method
becomes higher. As always, a larger sample size will lead us
to a better result.

4. Conclusions

The pattern matching technique is one of the two most
widely used approaches for root-cause identification. It has
a several apparent advantages including: (i) there is a clear
geometric explanation of fault signatures or fault patterns;
(ii) the results can thus be easily visualized and physicaly
interpretated; and (iii) it is intuitive and easy for practition-
ers to implement and execute. We have developed a pro-
cedure to make the pattern matching method more robust
under the perturbations due to unstructured noise and sam-
pling uncertainties. Case studies have been conducted to il-
lustrate the effectiveness of this method. It is demonstrated
that the identification capability using the proposed proce-
dure is significantly improved. Also, in the case study, the
impact of different noise covariance structures, fault mag-
nitudes, and sample sizes is discussed. This method can be
used for a variation source identification in manufacturing
processes and will reduce product variability. One point we
need to make clear here is that the technique presented in
this paper is a follow-up step of fault detection, i.e., after a
fault is detected, we can decide if 1-out-of-p known faults
occurs or not by using the presented technique. Fault detec-
tion itself is an interesting problem (Apley and Shi, 2001)
and is not covered in this paper.

There are still some open issues worthy of future investi-
gation. Firstly, this method is developed by assuming that
one fault occurs at a time. Extension of the methodology to
multiple faults cases is under investigation. A second issue
concerns the fault isolation capability of the method. When
the angle between two fault signature vectors (i.e., two col-
umn vectors of A) is small, the method may not be able to
distinguish them and isolate the true fault source. The iso-
lation condition under which all faults are uniquely identifi-
able is worth further study. In addition, how to identify the
new fault(s) in the processes, referred to as the novelty iden-
tification problem, is a very interesting problem. Through
investigating this problem, we can extend our knowledge
on process faults and expand the fault domain that we can
identify.
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Appendix

In order to prove that sin(�θ ) = dist(span{ai}, span{v(1)
i })

we need the concepts of orthogonal projection and the dis-
tance between two subspaces.

Orthogonal projection: Let S ⊆ Rn be a subspace, and
P ∈ Rn×n is the orthogonal projection onto S if range (P) =
S, P2 = P, and PT = P. It is known that if v ∈ Rn,
and vT v = 1, then P = vvT is the orthogonal projection
onto S = span{v}, where span{·} represents the subspace
spanned by v.

Distance between subspaces: Suppose S1 and S2 are sub-
spaces of Rn, and they have the same dimension, then
the distance between these two subspaces is dist(S1, S2) =
‖B1 − B2‖2, where B1, B2 are the orthogonal projection to
S1, S2 respectively.

Proof. Given ‖ai‖2 = ‖v(1)
i ‖2 = 1, it is obvious that

sin(�θ ) =
√

1 − cos2(�θ ) =
√

1 − (aT
i v(1)

i )2.

We know aiaT
i and v(1)

i v(1)T
i are the orthogonal projections

on to the subspaces span{ai} and span{v(1)
i } respectively,

hence, dist(span{ai}, span{v(1)
i }) = ‖aiaT

i − v(1)
i v(1)T

i ‖2. Sup-
pose that X and Z are two p × p orthogonal matrices and
ai ∈ X, v(1)

i ∈ Z so that X = [ai, X2] and Z = [v(1)
i , Z2]. Then

we have that:

dist
(
span

{
ai}, span

{
v(1)

i

}) = ∥∥aiaT
i − v(1)

i v(1)T
i

∥∥
2

= ∥∥X
(
aiaT

i − v(1)
i v(1)T

i

)
Z

∥∥
2 =

∥∥∥∥∥
[

0 aT
i Z2

−XT
2 v(1)

i 0

]∥∥∥∥∥
2

.

Note that vectors aT
i Z2 and XT

2 v(1)
i are parts of the or-

thogonal matrix:

T =
[

aT
i v(1)

i aT
i Z2

XT
2 v(1)

i XT
2 Z2

]
=

[
T11 T12

T21 T22

]
.

Thus, we get.

‖T21‖2
2 = max

‖x‖2=1
‖T21x‖2

2 = 1 − min
‖x‖2=1

‖T11x‖2
2

= 1 − σmin(T11)2 = 1 − (
aT

i v(1)
i

)2
.

Likewise, using TT , it is easy to show that ‖T12‖2
2 = 1 −

σmin(T11)2 = 1 − (aT
i v(1)

i )2, hence ‖T21‖2
2 = ‖T12‖2

2 = 1 −
(aT

i v(1)
i )2. Here σ (·) means the set of the singular values.

Since dist(span{ai}, span{v(1)
i }) = ‖T21‖2

2 = ‖T12‖2
2 =

1 − (aT
i v(1)

i )2 (refer to Theorem 2.6.1 of Golub and Van
Loan (1996, p. 76), ‖T21‖2

2 = ‖T12‖2
2 = 1 − (aT

i v(1)
i )2 is

sin2(�θ ). �
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