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Cycle-based signals are generally obtained through the automatic sensing of critical process variables during each repetitive operation
cycle of a manufacturing process, and they thus contain a significant amount of information about the process condition. Increasing
attention has been paid recently to the problem of effectively monitoring these signals as an aid to the detection of process changes.
In general, either based on process engineering knowledge or on historical data analysis, it is possible to obtain process faults and the
corresponding signal patterns (the direction and magnitude of a mean shift). In order to fully utilize such fault pattern information
in process monitoring, this paper proposes a directionally variant control chart obtained through the effective combination of a
multivariate χ2 chart and a univariate projection chart. It is shown that the addition of the univariate projection chart can improve
the detection power for pre-known process faults, however, this may be at the cost of a deterioration in the detection power for
unknown faults. A detailed quantitative analysis is provided to justify the application conditions of the proposed chart. A case study
of cycle-based tonnage monitoring of a forging process is presented to illustrate the design procedures and the effectiveness of the
proposed control chart system.

1. Introduction

The rapid developments obtained in sensing and computer
technologies in recent years has allowed the implementation
of online measurement of process variables for manufactur-
ing process monitoring and control. Cycle-based signals are
a very important class of signals observed in many man-
ufacturing processes. As the name implies, a cycle-based
signal is a signal obtained using automatic sensing during
each repetitive operation cycle of a manufacturing process.
For example, tonnage signals (forming force) are measured
by the strain gauge sensors installed on a forging press ma-
chine. Figure 1(a) illustrates the tonnage signals of two con-
secutive production cycles that are sampled with respect to
the crank angle of a forming press. The vertical axis is the
forming force measured in tons, and the horizontal axis is
the crank angle of the press. Each cycle-based signal con-
tains 224 data points. In Fig. 1(b), these two cycle-based
tonnage signals are aligned as a function of the press crank
angle. The similarity of these two signals reflects inherent
process characteristics under a given specific operational
condition, whereas the differences reflect natural random
characteristics due to inevitable process noises. Therefore,
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under the same operational conditions, the signals can be
assumed to follow an identically independent multivariate
distribution, that is, one cycle-based signal is considered to
be a single observation of a multivariate random vector.
In this paper, the process condition is monitored through
detecting the multivariate mean change of the cycle-based
signals. Cycle-based signals exist in many manufacturing
processes, other than in forging processes, and examples in-
clude the forming force in a stamping process, the holding
force and current signals in a spot welding process and also
the insertion force in an engine assembly process.

Due to the complexity of analyzing high-dimensional
cycle-based signals, most industrial practice only uses sim-
ple statistics to characterize the cycle-based signals dur-
ing process monitoring. For example, the maxima mag-
nitude and the average value of the waveform signal are
the most commonly used statistics (Knussmann and Rose,
1993). In these methods, a large amount of the pro-
cess information contained in the signal waveform is not
fully utilized. Therefore, a monitoring system based on
these simple statistics often suffers from a high false-
alarm rate or misdetection rate under changing process
conditions.

Recently, process fault diagnosis using cycle-based sig-
nals has received a considerable amount of attention from
the research community. Several effective techniques have
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Fig. 1. (a) The forging tonnages of two cycles; and (b) aligned tonnages of two cycles.

been developed that utilize the classification of extracted
features of the cycle-based signals, including wavelet-
transformation-based methods (Koh et al., 1999a, 1999b;
Pittner and Kamarthi, 1999; Jin and Shi, 2001; Lada et
al., 2002; Zhou et al., 2003), Principal Component Anal-
ysis (PCA) method (Zhou and Jin, 2003) and the Design
of Experiments (DOE) method (Jin and Shi, 2000). These
techniques focus on automatic clustering and the learning
of fault patterns from historical data. As a result, knowl-
edge on process faults and the corresponding signal pat-
terns (e.g., directions and magnitudes of the mean shifts)
are continuously accumulated. The objective of this paper
is to investigate if the detection power of the monitoring sys-
tem can be improved by utilizing knowledge about process
faults, which are generally ignored in the existing process
monitoring techniques.

The available multivariate statistical process monitor-
ing techniques can be roughly categorized into two groups
(Pignatiello and Runger, 1990): (i) directionally invariant;
and (ii) directionally variant. The directionally invariant
multivariate control charts (e.g., the χ2 control chart and
the Hotelling T2 chart) have equal detection powers regard-
less of the direction of the mean shift. The directionally
invariant chart is “generic” in the sense that there is no as-
sumptions/constraints on the direction of the mean-shift of
a potential process fault. Clearly, information on the spe-
cific mean-shift direction of known process faults cannot
be considered in directionally invariant control charts.

A directionally variant chart detects the mean-shift in a
particular direction. Several types of directionally variant
charts have been proposed. Healy (1987) proposed a multi-
variate CUSUM chart that cumulatively sums in a given
specific direction. Therefore, the proposed chart is only
sensitive to that particular direction. Woodall and Ncube
(1985) use simultaneous multiple univariate CUSUM
charts to monitor a multivariate process. This chart will be
sensitive to the process change in the directions of the re-
spective axes of the process variables. Similarly, Hayter and
Tsui (1994) proposed multiple univariate charts to monitor
multivariate process variables. Their in-control region is a
cube instead of an ellipsoid as in the T2 chart. They found
that in a multivariate setting, neither chart is uniformly

more powerful than the other if the direction of the mean-
shift is unknown. Multivariate monitoring based on PCA
(Jackson, 1991) is also widely used for the process monitor-
ing of particular directions with large variations. Runger
and Montgomery (1997) studied the directional sensitivity
and quantified its effect for simultaneous univariate control
charts of multivariate process variables. Recently, Runger
(1996) proposed a U2 chart that is based on a projection of
all the characteristic variables into a given subspace accord-
ing to the mean-shift directions of known process faults. If
the subspace dimension of the projected variables in the
U2 chart is smaller than the dimension of the original vari-
ables, the U2 chart will in general have a better detection
power. However, in the projected subspace, the U2 chart
is constructed using a conventional T2 chart. Therefore,
given two different groups of process faults, the U2 charts
will be identical if the mean-shift directions of those fault
groups span the same subspace. Therefore, information on
known process faults such as the occurrence probability,
the specific mean-shift direction and magnitude is not fully
utilized.

The process faults can be generally classified into two
categories depending on the available knowledge: one cat-
egory contains so-called “known faults”, i.e., its multivari-
ate mean-shift direction and magnitude and the occurrence
probability are known; and the other category contains
so-called “unknown faults”, i.e., the corresponding knowl-
edge of these faults is unknown. A most common situation
in practice is that the process has both pre-known faults
and unknown faults. The above literature review shows
that currently existing directionally variant control charts
are mainly designed so as to improve the detection power
for known faults with little consideration of the detection
power for unknown faults. In this paper, we propose a direc-
tionally variant multivariate control chart system that has
an improved overall detection power to detect all potential
process faults including both known and unknown faults.
The basic principle is that in addition to using a direction-
ally invariant control chart to detect all unknown faults, a
set of simultaneous univariate control charts are also used
to enhance the detection power for potential known faults.
It is shown that adding univariate projection charts can
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improve the detection power for known faults, however,
this may be at the cost of deteriorating the detection power
for unknown faults. Thus, the proposed strategy intends to
achieve a better overall detection performance by balancing
the detection power for both known and unknown faults.

This paper is organized as follows. In Section 2, the prin-
ciple of the proposed directionally variant multivariate con-
trol chart will be presented. The procedures for the control
chart design and the performance analysis are also pro-
vided. Section 3 presents its application to the cycle-based
tonnage monitoring of forging processes to illustrate its ef-
fectiveness. The conclusions are presented in Section 4.

2. The proposed directionally variant multivariate
control chart

2.1. Problem statement

In this paper, we will consider three types of process con-
ditions: (i) normal working conditions; (ii) known faulty
working conditions; and (iii) unknown faulty working con-
ditions. If the ith sample of a cycle-based signal (without
causing confusion, a cycle-based signal can here also refer
to a cycle-based signal after dimension reduction) is de-
noted as a p-dimensional random vector xi, xi ∈ �p×l . The
probability distributions of the cycle-based signal under
normal working conditions, known faulty working condi-
tions, and unknown faulty working conditions are denoted
as F0, Fj(j = 1, . . ., k), and Fk+1, respectively. Note that we
assume there are k known faulty working conditions. The
following assumptions are made on the distributions of xi
corresponding to each condition.

Assumption 1. when xi ∼ F0, xi is i.i.d. normally distributed
with xi ∼ N(0, �);

Assumption 2. when xi ∼ Fj(j = 1, . . . , k), xi is i.i.d. nor-
mally distributed with xi ∼ N(µj, �), µj is nonzero and
known. Furthermore, the probability that xi follows Fj
given that the process is in faulty condition is pj.

Assumption 3. when xi ∼ Fk+1, xi is i.i.d. normally dis-
tributed with xi ∼ N(µu, �) and µu is unknown. However,
we assume that the minimal Mahalanobis distance between
µu and 0 is du for all interested unknown faults. Further-
more, the total probability of xi ∼ Fk+1 under all unknown
faulty working conditions given that the process is in faulty
condition is pu = (1 − �k

j=1ρj).

Remark 1. Because we focus on the mean-shift detection in
this paper, the covariances matrices of xi are assumed to be
the same for different working conditions. The mean-shift
detection in cycle-based signal monitoring has consider-
able engineering relevance. For example, the shape changes
(mean change) in the tonnage signal can be directly linked to
changes in the process setup condition in stamping. How-
ever, the covariance of the tonnage signals is determined
by interactions between random disturbances in a process.

In most cases, those changes are small and can be ignored.
Therefore, the assumption of the same covariance matrix
will not severely limit the applications of the proposed
method.

Remark 2. We assumed that knowledge of the mean-shift
directions under certain process faulty working conditions
is known. This information can be obtained through the
analysis of DOE data or historical data.

Remark 3. However, it is unreasonable to assume that all the
process faulty conditions are known. To simplify the prob-
lem, we use a multivariate normal distribution to represent
all other unknown faults which have a minimal mean-shift
justified by the minimum Mahalanobis distance we want to
detect.

The conventional multivariate control charts such as the
χ2 control chart or the available directionally variant charts
do not take the information listed in assumptions 2 and 3
into consideration. The objective of this paper is to design
a directionally variant control chart that fully utilizes the
available information to increase the detection power un-
der the same false-alarm rate compared with conventional
charts. Although we use the χ2 control chart in Phase II
monitoring as a comparison benchmark, other similar com-
parisons can be done for other charts (e.g., the T2 chart).

The problem of control chart design under assumptions
1–3 can be further formulated as follows. For a multivariate
control chart with an in-control region C (i.e., if xi ∈ C, then
xi is called “in-control”), the false-alarm rate, also called the
Type I error probability, is given as:

α = 1 −
∫

x∈C

1
(2π )p/2|∑|1/2

exp
(

− 1
2

xT
∑−1

x
)

dx,

(1)
and it is straightforward to obtain that the misdetection
rate, also called the Type II error probability, is:

β = pu · Eµ

[∫
x∈C

1
(2π )p/2|∑|1/2

× exp
(

− 1
2

(x − µu)T
∑−1

(x − µ)
)

dx
]

+
k∑

i=1

pi

∫
x∈C

1
(2π )p/2|∑|1/2

× exp
(

−1
2

(x − µi)
)T ∑−1

(x − µj)dx.

(2)

The first term of Equation (2) is the Type II error caused
by the unknown process faults, where Eµ[·] is the expecta-
tion with respect to µu.

It is known that if x ∼ N(µ, �), then y ∼ N(�−1/2µ, I),
where y = �−1/2x and I is an identity matrix. Therefore,
without loss of generality, it can be assumed that the covari-
ance matrices under consideration are all identity matrices
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to simplify the derivation. Hence, the expression of Σ in
Equations (1) and (2) can be replaced by I.

Consideration of Equations (1) and (2) leads us to believe
that actually the control chart design can be formulated as
an optimization problem of the form of:

β∗ = min
C

[β], subject to α = constant. (3)

In other words, we want to find the control limits or the
in-control region C to minimize Type II error under the
constraint of a given Type I error. Without causing confu-
sion, we use the same symbol C for the control limits.

It is in general very difficult to obtain the global optimal
solution of the problem in Equation (3). In this paper, we
present a suboptimal solution to this problem, which en-
sures that we are able to provide a higher detection power
than a conventional multivariate control chart.

2.2. The principles behind the proposed directionally variant
multivariate control chart

The proposed directionally variant multivariate control
chart consists of two sets of control charts:

1. a χ2 control chart, denoted as the χ2
DV chart; and

2. k simultaneous univariate charts for yji, j = 1 . . . k,
where yji = vT

j xi and vj is the direction vector of the mean
shift of Fj, i.e., vj = µj/|µj|. These univariate charts are
denoted as the uDV(jj = 1 . . . k) chart.

For the combination of the χ2
DV chart and the uDV

j (j =
1 . . . k) charts, the joint decision rule is that the system is
out of control when any one of the control charts indicates
an out-of-control condition. Based on this rule, the control
limits of the proposed control chart can be obtained as in
Fig. 2.

In Fig. 2, the solid circle with radius r1 is the control limit
of the χ2

DV chart. The lines that are perpendicular to the
mean vectors (µ1 and µ2) of known faulty conditions are
the control limits with c1 and c2 in the uDV

j charts (j = 1, 2).
The intersection of the in-control regions of these three
control charts is represented by the bold solid line, within

Fig. 2. Illustration of the proposed control charts.

which is the in-control region denoted as CDV of the com-
bined control chart system. Clearly, the proposed chart is a
directionally variant chart having different detection pow-
ers for the two known faults and the unknown faults. To
design this control chart, we need to specify the parameters
r1 and cj, j = 1 . . . k.

For comparison, the control limit of a conventional χ2

control chart (denoted as χ2
c ) is also illustrated in the figure

as the dashed-line circle with the radius of r0. The in-control
region of theχ2

c chart is denoted as Cc. To design this control
chart, we only need to specify the parameter r0. We say that
the proposed control chart is a better control chart than the
conventional χ2

c chart if: (i) P(xi ∈ CDV) = P(xi ∈ Cc) when
xi ∼ F0; and (ii) P(xi ∈ CDV) < P(xi ∈ Cc) when xi ∼ Fj,
for some j ∈ {1, . . . , k + 1} where P(A) is the probability of
event A.

2.3. Conditions for detection power increase using the
directionally variant control chart

Before we go into the design steps of finding the parameters
r1 and cj, j = 1 . . . k, we need to first answer the question of
“under what conditions is the proposed control chart better
than a conventional multivariate control chart?” To provide
a better understanding of the problem, we investigate the
simplest case of one known faulty condition.

In this case, the proposed control chart consists of one
χ2

DV chart and one uDV
1 chart. The χ2

DV chart aims to detect
the existence of F2, and the uDV

1 chart aims to detect the
existence of F1. It is expected that the uDV

1 chart is more
sensitive than the χ2

DV chart in detecting the known fault
F1. This is confirmed by the following proposition.

Proposition 1. Given a directionally variant chart (combining
χ2

DV and uDV
1 as illustrated in Fig. 3) with the control limits

of r and c, respectively, then, the Type II error probability
for the detection of the known fault F1 (denoted as β1) is
monotonically decreasing with respect to r if the Type I error
probability of the directionally variant chart is fixed as α, i.e.,
dβ1/dr < 0 if α is a constant.

Proof. The detailed proof of this proposition is listed in the
Appendix. �

The result can be interpreted using Fig. 3.
The shaded region in Fig. 3 is CDV. When the control

limit of the uDV
1 chart is moved close to the origin (i.e., c de-

creases), the control limit of the χ2
DV(r2) should increase to

keep a constant total Type I error probability. Clearly, the
detection power of the known fault (1 − β1) will increase
when c decreases and conversely it will decrease when r in-
creases. The result of Proposition 1 indicates that the gain
in detection power is more significant than the loss and
hence 1 − β1 will increase when α is kept constant and c
decreases. Furthermore, it can be seen that the detection
power of a combined chart is larger than that of a con-
ventional χ2

c chart for the known process fault condition
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Fig. 3. The χ2
DV chart and the uDV

1 chart with one known fault.

when c < rc. The detection power of the combined chart
for the unknown fault Fk+1 is not necessarily higher than
the conventional χ2

c chart. This is shown in Fig. 4.
As an example, for a two-dimensional case, the combined

control charts are set up as in Fig. 3 and the total Type I error
of the two charts is α = 0.05. The radius of a conventional
χ2

c chart with the same Type I error of α = 0.05 is 2.43. We
assume that the mean locations of all interested unknown
faults of F2 are evenly distributed on a circle with a radius of
five. For the combined charts, the Type II error probability is
calculated based on Equation (2) (pu = 1 in this case) using
a numerical integration method. The resulting Type II error
probability of the uDV

1 chart, χ2
DV chart, and the combined

charts are plotted versus r. Clearly, when r gets larger, the
probability of misdetection of unknown faults increases and
it is larger than that of a conventional χ2

c chart. Another

Fig. 4. The probability of misdetection of the unknown faults.

interesting point that can be seen from Fig. 4 is that the
unknown fault is mainly detected by the χ2

DV chart in the
combined chart: the probability of misdetection by the uDV

1
chart for unknown faults is quite high (above 0.6) and the
curve of the combined chart is quite close to the curve of
the χ2

DV chart. This analysis can be further summarized as
the following two remarks:

Remark 4. Only using a directionally variant chart could
result in a large probability for misdetection of the unknown
faults. To guarantee the overall detection power, combining
both directionally variant and directionally invariant charts
is a better strategy. This is the major difference between the
proposed method and the currently available directionally
variant charts.

Remark 5. Because the directionally variant chart (uDV
1

chart in Fig. 3) plays a less important role in detection of the
unknown faults, we can use the probability of misdetection
by theχ2

DV chart to approximate the probability of misdetec-
tion of the combined chart for unknown faults. Obviously,
the approximated value will always be larger than the ac-
tual value because the condition of P{[xi ∈ χ2

DV | F2] ∩ [xi ∈
uDV

1 | F2]} ≤ P{xi ∈ χ2
DV | F2} always holds.

The proposed combined control chart has an improved
detection power for the known process fault but a deterio-
rated detection power for the unknown process fault. For
a process with both known and unknown process faulty
conditions, which is the most common situation in prac-
tice, the detection power of the proposed combined chart
is a trade-off between these two factors. Since there is no
closed-form expression available for the integral result of
the normal density function on an irregular area CDV, a
numerical integral calculation is used to investigate the cri-
teria for which the combined control charts have a better
detection power than the conventional χ2

c chart.
The basic steps of the numerical method of finding the

criteria are illustrated below using a single known fault case.
The general design procedure of the combined control chart
system is presented in Section 2.4.

The total Type II error of the combined chart is affected
by the specified Type I error and its allocation of the Type
I error (α0) in the χ2

DV control chart and Type I error (α1)
in the uDV

1 . Figure 5(a) shows the relationship between α0
and α1 for a given fixed overall Type I error α = 0.05. An
optimization problem of:

min
α1

[|α − f (α0, α1)|],

is solved to obtain Fig. 5(a), where f (α0, α1) is the over-
all Type I error based on Equation (1). To evaluate Equa-
tion (1), we need to calculate the integral of a multivariate
normal distribution on an irregular region CDV (e.g., the
shaded area in Fig. 2). The Monte Carlo simulation method
(Press et al., 1993) is used in this paper because it is good at
the integral calculation of a smooth function on extremely
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Fig. 5. (a) The relationship between α1 and α2 for a fixed overall
Type 1 error when α = 0.05; and (b) the Type II error of the
combined chart.

irregular areas. Due to the smoothness of the cost function
|α − f (α0, α1)|, the optimization can be simply done using a
binary search or golden section search method (Press et al.,
1993).

Figure 5(b) shows the Type II error of the combined chart
as a function of α0 when p1 = 0.2 and 0.5. Here, the mean
shifts of F1 and F2 are defined as d1 and du, respectively,
and both of them are set equal to three. Equation (2) can
be used to calculate the total Type II error of the combined
chart. As discussed above, the first term of the right-hand

Fig. 6. The criteria of adopting the combined chart (p1 = 0.2, 0.4, 0.6, and 0.8, respectively): (a) α = 0.01; (b) α = 0.05; (c) α = 0.10;
and (d) α = 0.15.

expression of Equation (2) can be approximated by solely
using the Type II error probability of the χ2

DV chart. The
Type II error probability of a conventional χ2

c chart given
the same fixed α = 0.05 is also shown as two horizontal
lines in Fig. 5(b). One significant characteristic of Fig. 5(b)
is that the Type II error probability of the combined chart is
not always smaller than that of a conventional χ2

c chart. It
depends on the design of the combined control chart and the
behavior of the known faults. When the unknown fault F2
dominates as at the conditions of d1 = 3, du = 3, p1 = 0.2,
it is possible that no matter how we select the χ2

DV chart and
the uDV

1 chart, we cannot achieve a better detection power
to that of a conventional χ2

c chart.
An operation-characteristic curve as shown in Fig. 6 (a–

d) is developed to determine the sufficient condition of
obtaining benefits by using the combined chart when one
known fault exists. Figure 6 (a–d) provides the selection
criteria for the combined chart under several typical sit-
uations. We denote βc(d1, du, p1, α) as the Type II error
of the conventional χ2

c chart, βDV(d1, du, p1, α0, α) as the
Type II error of the combined chart, where α0 is the Type
I error of the χ2

DV chart, and the increase in the detection
power by using the combined chart is denoted by γgain where
γgain = βc(d1, du, p1, α) −βDV(d1, du, p1, α0, α). The curve is
the smallest du such that for a given α error, d1, and p1, the
γgain of using the combined chart is 0.001. In general, an
increase in du will reduce the contribution of the unknown
faults to the overall Type II error. Therefore, for a given con-
dition of α, d1, p1, and du, if the point (d1, du) falls above the
designated curve, we can reduce the overall Type II error by
at least 0.001 using the combined control chart. Therefore,
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Fig. 6 (a–d) can be used to check if the detection power will
be increased using the proposed combined control charts.

In Fig. 6 (a–d) we assume that d1 ≥ 3 and du ≥ 3. The
rationale is that when the mean shifts of the process faults
are too small, it is impossible to design a control chart that
has both an acceptable small Type I error and Type II error.
Although we can still increase the detection power by us-
ing the combined charts as compared to the conventional
method, the total β error is too large to be accepted when
the mean shifts are small. The curves in Fig. 6 (a–d) clearly
show that the overall detection power increase of the com-
bined chart is mainly contributed by the detection power
increase of the known process fault: when the weight of the
known fault increases from 0.2 to 0.8, the curve moves from
left to right.

2.4. Design procedure of the directionally variant
control chart

The discussion of the single known fault case provides the
intuitive understanding of the design principles of the pro-
posed combined control chart. If there are k known faults in
the system, k projection charts uDV

j , j = 1 . . . k, need to be
used. Inevitably, the justification and design of the com-
bined control chart is more complicated. If there are k
known faults, we need to select k + 1 parameters (k pa-
rameters for the uDV

j , j = 1 . . . k, charts and one for the χ2
DV

chart). These parameters are designed under the constraint
of the overall Type I error. To simplify the problem and
provide generic guidelines on the design of a combined
control chart for multiple known process faults, we first
adopt a “conservative” rule: the control limits of all the
uDV

j , j = 1 . . . k, charts are the same. This rule reduces the
design parameters from k + 1 to two. Clearly, if we can in-
crease the detection power using the combined chart under
this rule, we can certainly further improve the performance
of the control charts by allowing different control limits for
the uDV

j , j = 1 . . . k, charts.
Similar to the single known fault case, the use of the com-

bined chart is not always beneficial in terms of the overall
detection power. We will provide some generic conditions
and justification of the use of the proposed combined charts.

First, the Type II error of detecting all known process
faults (βp) can be obtained as:

βp =
k∑

j=1

pjβj(αp, α0, dj). (4)

In Equation (4), βj is the Type II error in detection of Fj.
The numbers dj and pj are the distance of the mean-shift and
the probability of the occurrence of Fj, respectively. αp and
α0 are the Type I error probabilities of the uDV

j , j = 1 . . . , k,
charts and the χ2

DV chart, respectively. It should be noted
that αp and α0 are not independent because they need to
satisfy the requirement of the overall α error. Similarly, the
Type II error of the conventional χ2

c chart in detecting all

known process faults βpc can be obtained as:

β1
pc =

k∑
j=1

pjβjc(α, dj), (5)

where βjc is the Type II error of detecting Fj in the conven-
tional χ2

c chart. In most cases, βpc larger than βp.
On the other hand, the Type II error of the combined

chart for the detection of the unknown fault (Fk+1) generally
increases. Denote by βu and βuc the Type II error of the com-
bined charts and the conventional χ2

c chart for detection of
Fk+1, respectively. The loss in detection power by using the
combined charts can be obtained as γloss = pu(βu − βuc),
where pu is the probability of the occurrence of Fk+1. Sim-
ilar to the case of a single known fault, we approximate
the γloss as the difference between the Type II errors of the
conventional χ2

c chart and the χ2
DV chart. Using this ap-

proximation, the βu is only a function of α0 of the χ2
DV and

the mean-shift distance of the unknown fault du.
It is clear that if (βpc − βp is larger) than pu(βu − βuc), i.e.,

if:

(βpc − β) + pu(βuc)/pu > βu, (6)

then the combined control charts have more detection
power than the conventional χ2

c chart. Therefore, we can
compare the value of the left-hand side of Equation (6) and
βu to determine if it is beneficial to use the combined chart.

Figure 7 illustrates the relationship between βu and α0 for
a given du (the number marked on the curves). Obviously,
βu will decrease with an increase in α0 for a fixed du or with
an increase in du for a fixed α0. Clearly, Fig. 7 can be used to
determine the gain in detection power by using the proposed
control charts under different variable dimensions.

An example of utilizing Fig. 7 is shown in Fig. 8. The
dimension of the process variable is four and there are
three known process faults (F1, F2, F3) with mean-shift lo-
cations at µ1 = 3[1 0 0 0]T , µ2 = 4[1/

√
2 1/

√
2 0 0]T and

µ3 = 4[1/
√

2 0 0 1/
√

2]T , respectively. The probabilities
of F1, F2, and F3 are p1 = 0.2, p2 = 0.3, and p3 = 0.3 re-
spectively. The mean-shift distance of unknown fault F4
is set at three. Based on these parameters, we can calcu-
late (βpc − βp + puβuc)/pu with respect to the α0 for a given
overall α. The procedure is as follows:

1. For a given Type I error for theχ2
DV chart in the combined

charts, denoted as α0 and 0 < α0 < α, find the Type I
error (α1) of the projection charts to satisfy the overall
Type I error. In this example, the overall α error is set at
0.05.

2. Based on the selected α0 and α1, the Type II error for
detecting the known faults are calculated. The compu-
tation requires a multi-dimensional normal integral cal-
culation on an irregular area. The Monte Carlo simu-
lation method is used. A large number (N = 1,000,000)
of four-dimensional normal distributed data points are
generated and the number of data points that fall in the
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Fig. 7. The relationship between βu and α0 for a given du.

irregular control limits are counted as n. The in-control
probability is taken as n/N. This integral calculation
method is also used in Hayter and Tsui (1994).

3. The Type II error of the conventional χ2
c chart can be

calculated using the regular non-central χ2 distribution.
The degree-of-freedom is four and the non-central pa-
rameter is the square of the mean-shift distance.

Following the above procedure, the curve of (βpc − βp +
puβuc)/pu against α0 can be generated. If this curve is over-
lapped with the corresponding contour curve of Fig. 7, we

Fig. 8. Justification for using the combined control charts for mul-
tiple faults.

can easily determine if the combined control charts can be
used to reduce the overall Type II error, i.e., if the curve of
(βpc − βp + puβuc)/pu is above the corresponding curve (the
curve marked “3” in Fig. 8) of βu, then the overall Type
II β error can be reduced. Furthermore, by checking the
difference between these two curves, we can select a good
α0 value. For example, in Fig. 8, this difference approxi-
mately reaches a maximum value at about α0 = 0.03. There-
fore, α0 = 0.03 could be used for the combined control
charts.

We have discussed the justification for using the proposed
combined control charts when some of the process faults
are known. A summary of the design procedures is given as
follows:

Step 1. Find the mean-shift locations (µi, j = 1 . . . k) of the
typical process faults and their occurrence proba-
bilities (pi, j = 1 . . . k) when a process fault occurs.
This information can be obtained from an analysis
of historical production data.

Step 2. Define the critical mean-shift distance of the un-
known faults. For all unknown faults with a total
occurrence probability of pu = (1 − ∑k

j=1 pj), engi-
neering specification is used to justify the minimum
distance of du (the critical magnitude of the mean-
shift of the unknown faults that we want to detect).

Step 3. Justify the use of the combined chart. If there is only
one known fault (k = 1) , Fig. 6 (a–d) can be used
to check if the detection power can be improved by
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using the combined chart. If multiple known faults
exist (k > 1), then the procedures introduced in this
section need to be followed. In more detail,

� The first step is to decide the nonparametric re-
lationship between the Type I error (α1) of the
uDV

j , j = 1 . . . k charts, and the Type I error (α0)
of the χ2

DV chart under the constraint of a fixed
overall Type I error.

� Knowing the nonparametric relationship be-
tween α0 and α1 for a given fixed α, the curve of
(βpc − βp + puβuc)/pu against α0 can be obtained.
Using Fig. 7, we can determine if the detection
power of the combined chart is better than the
conventional χ2

c chart.

Step 4. After the benefit of using the combined chart is
confirmed through Step 3, the optimal α0 and cor-
responding α1 can be obtained by reading the curve
of the difference between the Type II error proba-
bility of the conventional χ2

c chart and that of the
combined chart (e.g., Fig. 8 for the case of multiple
known faults or Fig. 5(b) for the case of a single
fault).

After these four steps, the control limits of the χ2
DV chart

and the univariate projection charts can be decided. A prac-
tical example using cycle-based tonnage signal monitoring
is illustrated in the following section to demonstrate the
application of the developed control chart system.

3. Case study: forging process monitoring

The forging operation is an important manufacturing pro-
cess in which metal is formed, under impact or pressure, to
produce a desired shape with improved material properties.
A forging process usually begins with stock preparation,
cut-off, cleaning, inspection and heating. The key step is
the deformation step. This step is done by a forging press.
Figure 9 shows a simplified diagram of the structure of a
mechanical forging press. In this type of press, the form-
ing energy is provided by the kinetic energy stored in the
flywheel.

The forging process is a very complicated manufactur-
ing process. The final product quality can be affected by
many factors, e.g., the die conditions, lubrication, perform
operation, workpiece properties, temperature, and process
setting parameters such as shut height etc. (Arentoft and
Wanheim, 1997).

The tonnage as illustrated in Fig. 1 is a very important
process variable that reflects the forging press’ condition,
such as the lubrication, wear conditions, etc. For each cycle
of the forging operation, a tonnage signal can be obtained.
It is highly desired to develop a methodology to analyze
and monitor the cycle-based tonnage signals (Barnett et al.,

Fig. 9. A diagram of a mechanical forging press.

1998). The proposed control chart system can be used in this
case.

Since a tonnage signal is a high-dimensional random vec-
tor, a dimension reduction step that can effectively extract
the variation patterns from the signal is needed to apply the
control chart technique. Using PCA 10 critical features can
be extracted from the tonnage signals. Using a historical
dataset with 573 samples, several working conditions can
be identified from these 10 features: (i) Normal working
conditions with a mean of 0; (ii) faulty working condition
no. 1 with a mean of µ1 = [2.4112 − 0.4908 − 0.9129 −
0.3412 0.2679 0.7083 0.1291 − 0.1403 − 0.1460 0.0566]T,
which contains 105 samples; (iii) faulty working condition
no. 2 with a mean of µ2 = [5.5100 − 0.0673 − 0.6282 −
0.1261 0.1454 2.8300 1.0287 − 0.5130 0.2080 − 0.4495],
which contains 39 samples; and (iv) some scattered faulty
working conditions with unknown sources, which contains
77 samples with the average distance of 4.0 from zero. Based

Fig. 10. The β error of the combined charts and the conventional
χ2

c chart.
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Table 1. Comparison between the conventional χ2
c chart and the combined charts

β1 β2 β3 β
Overall

α α0 α1 χ2
c New χ2

c New χ2
c New χ2

c New

0.05 0.0255 0.0200 0.585 0.207 0.002 0.000 0.207 0.293 0.351 0.201
0.1 0.0562 0.0390 0.455 0.131 0.001 0.000 0.128 0.192 0.261 0.129
0.15 0.0881 0.0591 0.369 0.091 0.000 0 0.089 0.142 0.206 0.092

on the number of samples in each working condition, the
probability of the occurrence of the fault conditions can
be approximately estimated as p1 = 47.51%, p2 = 17.66%,
and pu = 34.83%. Using these parameters, the direction-
ally variant control charts can be designed. Following the
procedure described in Section 2.4, we can determine if the
detection power can be increased by using the combined
charts. The results are shown in Fig. 10 for different over-
all Type I error probabilities (i.e., α = 0.05, α = 0.10, and
α = 0.15 respectively).

The bold curves in Fig. 10 are the curves of (βpc − βp +
puβuc)/pu. If the bold curve is above the corresponding
curve (the curve marked with a “4” in this case, which
means du = 4.0) ofβuc the detection power can be increased.
The figure indicates that benefit can be obtained by using
the combined chart in a large range of α0. The optimal α0
can be obtained by further checking the magnitude of the
difference. A detailed comparison between the proposed
combined chart and the conventional χ2

c chart is given in
Table 1.

In Table 1, the columns headed by α0 and α1 are the op-
timal values of the Type I errors of the χ2

DV chart and the
projection uDV

1 and uDV
2 charts, respectively. The columns

headed by β1, β2, and β3 are the Type II errors of detect-
ing the abnormal working conditions #1, and #2, and the
unknown fault by using the conventional χ2

c chart and the
combined charts, respectively. The last column provides a
comparison of the overall Type II errors of the conventional
chart and the proposed combined charts. From this result,
it can be seen that the proposed combined charts have a
significantly higher detection power than the conventional
χ2

c chart.

4. Conclusions and discussion

In this paper, we have proposed a directionally variant mul-
tivariate control chart to monitor cycle-based signals. Un-
like either the conventional multivariate control charts such
as the χ2 chart that do not consider the available informa-
tion about the process faulty conditions or the discrimina-
tion analyses that assume that the process faulty conditions
are completely known, we classify the process faulty con-
ditions into two categories: (i) the known faulty condition;
and (ii) the unknown faulty condition. Our rationale is that
in most cases, some process faulty conditions manifested

in the cycle-based signal can be obtained from engineering
design, DOE, or abundant historical data.

We have shown that for known process faulty conditions,
the detection power of the conventional multivariate con-
trol such as χ2

c charts is improved by adding simultaneous
univariate “projection” control charts. Therefore, a direc-
tionally variant control chart was designed by combining
both a multivariate χ2 chart and univariate charts. How-
ever, for the unknown faulty condition, the detection power
of the combined chart could be reduced. The overall ben-
efits of using the proposed combined control charts are
determined by the trade-off between the known faulty con-
dition and the unknown faulty condition. We discussed the
generic conditions and justification for using the proposed
charts. We have shown that an increase in the known fault
occurrence probability or the mean-shift distance of the
unknown faults, results in an improvement in the overall
detection power of the combined control chart. For the
convenience of implementation under a single known fault
condition, we provided a set of plots shown in Fig. 6 (a–d)
for users to directly check the conditions for the use of the
proposed charts. For multiple faults, a set of typical plots
of βu are shown in Fig. 7, which can be used to identify the
conditions to use the combined charts under a common
range of data dimension ranging from two to 13. A forging
tonnage monitoring example was presented to illustrate the
effectiveness of this method.

A couple of interesting problems are left open. The first
one is the impact of the accuracy of the known and un-
known faulty conditions (their mean-shift direction and
the occurrence probability) on the performance of the pro-
posed control charts. In most cases, the process working
conditions need to be estimated based on historical data.
Ultimately, the estimation method and the control chart
design need to be considered together to achieve the best
detection power. This problem is currently under investiga-
tion. The second point is that the developed control chart
system consists of a χ2 chart and some simple univariate
projection control charts. However, this should not be the
only way to combine different types of control charts to-
gether for the effective detection of both known and un-
known process faulty conditions. For example, EWMA and
CUSUM charts are quite effective in detecting small mean
shifts. They can be used as replacements for the Shewhart
type of control charts to detect the small mean shifts of
known faults. Although the design guidelines might need
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to be modified, the basic idea of combining different charts
together to improve the performance remains unaltered.
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Appendix

Proof of Proposition 1. Firstly, consider the two-
dimensional case. Without loss of generality, we assume
that the mean of F1 is located at (d1, 0). The control limit of
the combined control charts, denoted as CDV, is the contour
of the shaded region in Fig. 3. By definition, we have:∫

CDV

f0(x1, x2)dx1dx2=1−α,

∫
CDV

f1(x1, x2)dx1dx2=β1,

(A1)
where

f0(x1, x2) = 1
2π

exp
(

− 1
2

(
x2

1 + x2
2

))
and

f1(x1, x2) = 1
2π

exp
(

− 1
2

[
(x1 − d1)2 + x2

2

])
,

are the probability distribution functions of process mea-
surement x = [x1, x2]T when x ∼ F0 and x ∼ F1, respec-
tively.

Denote S1 = 1 − α, then we can write that:

S1=
∫ c

−r

exp
( − x2

1/2
)

√
2π

∫ √
r2−x2

1

−
√

r2−x2
1

1√
2π

exp
(−x2

2

/
2
)
dx2dx1.

(A2)

Using the error function, Equation (8) can be simplified to:

S1 =
∫ c

−r

exp
(−x2

1/2
)

2
√

2π

[
erf

(√
r2−x2

1√
2

)

−erf

(
−

√
r2−x2

1√
2

)]
dx1. (A3)

Noting that:

d
dα

∫ ψ(α)

φ(α)
f (x, α)dx = d


dα
f (α, ψ)−dφ

dα
f (α, φ)

+
∫ ψ(α)

φ(α)

∂f
∂α

dx,

and
d
dz

erf(z) = 2√
π

exp(−z2),

we have that:

dS1

dr
= exp(−c2/2)

2
√

2π

[
erf

(√
r2 − c2

2

)
− erf

(
−

√
r2 − c2
√

2

)]

× dc
dr

+
∫ c

−r

exp(−r2/2)√
2π

√
π

r√(
r2 − x2

1

)/
2

dx1. (A4)
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Since α is fixed, we will have dS1/dr = 0. Therefore:

dc
dr

= −
(∫ c

−r

exp(−r2/2)√
2π

√
π

r√(
r2 − x2

1

)/
2

dx1

)/(
exp(−c2/2)

2
√

2π

×
[

erf

(√
r2 − c2

2

)
− erf

(
−

√
r2 − c2

2

)])
. (A5)

Following very similar steps, we have that:

dβ1

dr
= exp(−(c − d1)2/2)

2
√

2π

[
erf

(√
r2 − c2
√

2

)

− erf

(
−√

r2 − c2
√

2

)]
× dc

dr
(A6)

+
∫ c

−r

exp
( − (r2/2) − (

d2
1/2 − d1x1

))
√

2π
√

π

r√(
r2−x2

1

)/
2

dx1,

where

β1 =
∫ c

−r

∫ √
r2−x2

1

√
−r2−x2

1

1
2π

exp
(
−1

2

(
(x1 − d1)2+x2

2

))
dx1dx2.

Substituting Equation (A5) into Equation (A6) we have:

dβ1

dr
= exp

(−d2
1 − r2/2

)
√

2π

∫ c

−r
(exp (d1x1) − exp (cd1))

× r√(
r2 − x2

1

)/
2

dx1. (A7)

Clearly, since x1 < c because x1 ∈ [−r, c), the integrand in
Equation (A7) is always less than zero except for one data
point. Hence, we can conclude that dβ1/dr < 0.

It is straightforward to extend the result into a higher-
dimensional case because of the properties of multivariate
normal distributions. Without loss of generality, we can
assume that µ1 is located on one axis of the coordinate sys-
tem. Furthermore, the high-dimensional multivariate nor-
mal distribution can be projected onto a plane, denoted
as S, that contains the mean locations of both F0 and F1.

The projected marginal two-dimensional distribution is still
normal (Johnson and Wichern, 1998). Because the control
limit of the univariate projection chart is perpendicular to
the direction vector of µ1, the control limit of the uDV

1 chart
on the S plane is a line. Therefore, the multi-dimensional
problem is reduced to a two-dimensional case. The same
results hold.
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