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Signature matching is an increasingly popular method for variation source identification in manufacturing processes. In this method,
the variation source is identified through matching the variation patterns of specific process faults, also called fault signatures, with the
variation patterns in the newly collected quality data. There are situations in which a fault has occurred several times and consequently
several signatures exist for the same fault. A technique is proposed that is able to integrate these multiple signatures together to enhance
the accuracy of variation source identification. A linearly combined fault signature is constructed to increase the detection power of
the fault identification. A numerical study is also presented to validate the effectiveness and robustness of the proposed method.
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1. Introduction

Variation reduction during the manufacturing phase can
play an essential role in the success of a manufacturing en-
terprise in today’s globally competitive marketplace. As a
critical step in variation reduction, variation source (also
called process fault) identification has received significant
attention in recent years. The available quantitative varia-
tion source identification methods can be roughly classified
as analytical methods, which employ off-line physical mod-
els from engineering analyses, and data-driven techniques,
which employ statistical models using only process data.

Most current analytical methods are based on linear
models. Several linear models have been proposed to link
the quality measurement data and the variation sources
for complex multi-stage assembly processes (e.g., Jin and
Shi (1999), Mantripragada and Whitney (1999), Ding et al.
(2000), Camelio et al. (2003)) and machining processes (e.g.,
Djurdjanovic and Ni (2001), Zhou et al. (2003b), Loose
et al. (2007)). These models can be put in the following
generic form:

y = Af + ε, (1)

where y is the product quality measurement which is a vec-
tor that consists of the deviation of each quality characteris-
tic from its nominal value, A is a constant coefficient matrix
determined by process/product design, f is a vector that rep-
resents the process variation sources, and ε represents the
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system background noise including the process natural vari-
ation, unmodeled variation and measurement noises. Based
on this linear model, direct estimation methods (Apley and
Shi, 1998; Zhou et al., 2003a; Zhou et al., 2004; Ding et al.,
2005) and pattern matching methods (Ceglarek and Shi,
1996; Rong et al., 2000; Ding et al., 2002; Li and Zhou,
2006; Li et al., 2006) were developed to identify the varia-
tion sources in the system. These analytical methods need
a thorough understanding of the physics of the process to
build the process model, which is usually very difficult, if
not impossible, for a complex system (Chiang et al., 2001).

Unlike analytical methods, data-driven techniques fo-
cus on investigating the patterns in the extensive historical
quality data sets and thus do not require comprehensive
a priori knowledge of the manufacturing process. Factor
analysis (Apley and Shi, 2001) and blind source separa-
tion techniques (Apley and Lee, 2003) have been used to-
ward this purpose. Most recently, Jin and Zhou proposed
a self-improving data-driven variation source identification
procedure (Jin and Zhou 2006a, 2006b). In this procedure,
the symptom of the current variation source(s), which is
defined to be the sample covariance matrix of current qual-
ity measurement, is first extracted and then compared with
the existing fault signatures in the fault library. If a match
is found, then the current fault is identified as the fault as-
sociated with the matched signature. If no match is found,
the process is inspected to identify the new process fault,
and the associated symptom is added into the library as
the signature of the new fault. The self-improving method
is a data-driven method that can significantly reduce the
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920 Zeng et al.

process inspection number in variation source identifica-
tion: one needs to inspect the process only when new faults
occur in the system.

This article focuses on an open issue in data-driven vari-
ation source identification, i.e., which signature we should
use if multiple signatures exist in the fault library for the
same fault? In practice, the library will be increasing as
new faults occur. It is quite common that the same fault re-
curs multiple times and thus multiple fault signatures of the
same fault will be found in the fault library as time goes on.
These fault signatures provide an opportunity to improve
the detection power of the corresponding signature match-
ing. However, the refining of the fault signatures based on
multiple signatures of the same fault has not been studied
in the literature. In this article, we propose a signature refin-
ing method that linearly combines all the fault signatures
of the same fault and then uses the integrated signature in
signature matching. Optimal weights are identified that can
minimize the variance involved in the statistical testing and
thus maximize the detection power of the matching. The
performance of the refined signature is evaluated in terms
of type I error and type II error of the variation source
identification procedure. The robustness of the proposed
method with respect to the critical assumptions is investi-
gated as well.

This paper is structured as follows. Some technical details
of the self-improving variation source identification proce-
dure are reviewed in Section 2 and followed by problem
formulation of this study. The signature refining method
is presented in Section 3. Section 4 demonstrates the ef-
fectiveness and robustness of the proposed method us-
ing numerical examples. Finally, the paper is concluded in
Section 5.

2. Problem formulation

2.1. Brief review of the data-driven variation source
identification procedure

Before presenting the problem formation of signature inte-
gration, we provide some background information regard-
ing the data-driven variation source identification proce-
dure. First, a linear relationship between the process faults
and product quality, as shown in Equation (1), is assumed.
Furthermore, the following assumptions are made.

(A1) A is an unknown m × k matrix. The columns of A are
linearly independent.

(A2) f is a k × 1 vector that follows multivariate normal
distribution N (0, Σf), where the covariance matrix
Σf is diagonal. The components of f are assumed in-
dependent because the process faults are often inde-
pendent of each other. The fault occurrence is often
unrelated with system background noises and so we
also assume f is independent of ε. Moreover, the ith

fault is said to occur if the (i, i)th element of Σf is
non-zero.

(A3) ε is an m × 1 vector following multivariate normal
distribution N(0, σ 2

ε Im), where σ 2
ε is a scalar and Im is

an m × m identity matrix.

These assumptions are not very restrictive and quite com-
mon in the existing variation source identification literature
(Ceglarek and Shi, 1996; Apley and Shi, 1998; Rong et al.,
2000). It should be noted that assumption (A3) is mainly
for the purpose of simplifying the analytical derivation. It
is noted that although (A3) is reasonable when the same
measurement device is used for all the quality measure-
ments and the measurement noise is the dominant part of
the background noise, it does not precisely hold in some
practical situations. In this article, (A3) is assumed to make
the problem analytically tractable. Then, an extensive nu-
merical study is conducted to investigate the robustness of
the derived results when (A3) is violated.

We take covariance on both sides of Equation (1) and
with assumptions (A1) to (A3), get

Σy = AΣfA′ + Σε, (2)

where Σy is the population covariance matrix of y and the
superscript “′” means transposition. It is known that if one
fault exists in the system, λ1 � λ2 = . . . = λm, where λi,
i = 1, . . . , m, are eigenvalues of Σy. That is, we will have a
very large eigenvalue due to the fault and the rest compara-
tively small and equal eigenvalues (called small eigenvalues
later) due to the system background noise. A straightfor-
ward analysis can show that the eigenvector associated with
the largest eigenvalue of Σy will be equal to the column
vector (if it is normalized) of A corresponding to the oc-
curring fault (Apley and Shi, 1998; Johnson and Wichern,
2002; Ding et al., 2002). Based on this property, Sy, the
sample covariance matrix under a fault condition can be
treated as a fault signature and is used for fault identifi-
cation when the same fault recurs. Although the signature
matching technique can be used to identify multiple faults
simultaneously, we will focus on single fault cases (i.e., only
one fault occurs in the system at a time) in this paper. The
rationale is that the probability of simultaneous occurrence
of multiple independent process faults is often very small
compared with the single fault case.

The signature matching can be achieved through test-
ing the coincidence of the eigenprojections of the symptom
and the signature (Jin and Zhou, 2006b). Given a fault sig-
nature S1 and a symptom S2, assume their corresponding
population covariance matrices areΣ1 (with eigenvalues be-
ing λ11 � λ12 = . . . = λ1m and corresponding orthonormal
eigenvectors being q11, q12, . . . , q1m) and Σ2 (with eigen-
values being λ21 � λ22 = . . . = λ2m and eigenvectors be-
ing q21, q22, . . . , q2m) respectively. Accordingly, the (pop-
ulation) principal eigenprojections, which are associated
with the largest eigenvalues, are P1 = q11 + q′

11 and P2 =
q21q′

21. Also, define P = P1 + P2, and P0 is the principal
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Multiple fault signatures integration 921

eigenprojection of P. It’s easy to get that, under the null
case where Σ1 and Σ2 associate the same process fault,
P0 = P1 = P2 and, equivalently, (Im − P0)Pi = 0, i = 1,
2. With sample uncertainty, it is shown that the residual
v = [v′

1v′
2]′, where vi = vec{(Im − P̂0)P̂i}, i = 1, 2, has an

asymptotic normal distribution with zero mean vector and
covariance matrix Φ. Here, vec(.) is a stack operator that
transforms a matrix to a column vector, and P̂0 and P̂i are
estimates of P0 and Pi calculated based on S1 and S2. Φ has
the expression of (Schott, 1999):

Φ = diag(∆11,∆22) + C, (3)

where diag(.) places the elements in the parentheses along
the diagonals sequentially. The terms involved in Equation
(3) are expressed as follows:

1. ∆ii = {Im ⊗ (Im − P0)}Ψi{Im ⊗ (Im − P0)}, i = 1, 2,

and

Ψi = Hi var{vec(Λi)}Hi, (4)

where

Hi =
m∑

l=2

(λi1 − λil)−1(qi1q′
i1 ⊗ qilq′

il),

Λi = Si − Σi, (5)

and var{vec(Λi)} is the covariance matrix of vec(Λi).
When the sample size is large, vec (Λi) has an asymp-
totic normal distribution and the specific expression of
var{vec(Λi)} is (Ni − 1)−1(Im2 + Kmm)(Σi ⊗ Σi), where
Ni is the sample size of Si, “⊗” denotes the Kronecker
product and Kmm is a commutation matrix (Magnus and
Neudecker, 1979).

2. C is a partitioned matrix, [Chi], h = 1, 2, i = 1, 2, defined
by

Chi = {Im ⊗ (Im − P0)}
{ 2∑

f =1

(PhP+ ⊗ Im)Ψf

× (P+Pi ⊗ Im) − (PhP+ ⊗ Im)Ψi

−Ψh(P+Pi ⊗ Im)
}
{Im ⊗ (Im − P0)}.

Based on this result, a generalized Wald statistic:

T = v′Φ̂
+

v, (6)

can be developed that follows an asymptotic chi-squared
distribution with degrees of freedom v = m − 1 under the
null case (Schott, 1999). In Equation (6), Φ̂

+
is a consistent

estimator of Φ+, the Moore–Penrose generalized inverse
of Φ. To construct Φ̂

+
, Φ̂ should first be obtained and

Φ̂
+

is just the Moore–Penrose generalized inverse of Φ̂.
One way to obtain Φ̂ is deriving the expression of Φ by
population quantities (Σ, P, etc.) and then replacing the
population quantities with their sample counterparts. The

resulting formula to calculate T is (Schott, 1999):

T = u′(FΘ̂F)+u. (7)

The terms involved in Equation (7) are defined as follows:

1. Let q̂1j and q̂2j, j = 1, . . . , m, be the eigenvectors of S1
and S2, respectively, corresponding to their jth largest
eigenvalues, λ̂1j and λ̂2j. P̂1 = q̂11q̂′

11, P̂2 = q̂21q̂′
21, P̂ =

P̂+
1 P̂2. Let q̂j be the eigenvector of P̂ corresponding to

its jth largest eigenvalue. Γ̂0 = (q̂2, q̂3, . . . , q̂m) and Γ̂1 =
q̂11, Γ̂2 = q̂21. Then u = (vec(Γ̂

′
0Γ̂1)′, vec(Γ̂

′
0Γ̂2)′)′.

2. Θ̂ = diag(Ξ̂1, Ξ̂2) + V, where:

Ξ̂i =
m∑

l=2

λ̂i1λ̂il

ni(λ̂i1 − λ̂il)2
Γ̂

′
0q̂il q̂′

ilΓ̂0, (8)

where ni = Ni − 1, i = 1, 2. V is a partitioned
matrix [Vhi], h = 1, 2, i = 1, 2, and Vhi = ∑2

f =1

(Γ̂
′
hK̂+Γ̂1 ⊗ Im−1) Ξ̂f (Γ̂

′
f K̂+Γ̂i ⊗ Im−1) − (Γ̂

′
hK̂+Γ̂i ⊗

Im−1)Ξ̂i − Ξ̂h(Γ̂
′
hK̂+Γ̂i ⊗ Im−1) where K̂ = λ̂1q̂1q̂′

1.
3. F is the eigenprojection matrix of Θ̂ corresponding to

its m − 1 largest eigenvalues.

This result provides a statistical testing to identify if a fault
signature and a fault symptom match each other.

2.2. Mathematical formulation of signature integration

The above mentioned method can only match a symptom
with one single signature. Due to the common existence of
cases in practice where multiple signatures of the same fault
are available, it is necessary to consider the following prob-
lem: given w fault signatures, S11, S12, . . . , S1w (with Σ1t ,
t = 1, . . . , w, being the corresponding population covari-
ance matrices) which associate the same process fault, and a
fault symptom S2 (with Σ2 being its population covariance
matrix), how to conduct the signature matching?

To efficiently utilize the available signatures, a natural
idea is to construct a linearly combined signature:

Sc
1 =

w∑
t=1

γt S1t , (9)

called the integrated signature, where the weights γt , t = 1,
. . . , w, s.t.,

∑w
t=1 γt = 1, and extend the signature matching

method in Section 2.1 to match S2 and Sc
1. This requires that

the statistic in Equation (6) be adjusted when Sc
1 is used in

place of S1.
Furthermore, it is easy to see that when Sc

1 is used, the
variance of the resulted asymptotic normal distribution
(i.e., an adjusted version of Φ as defined in Equation (3);
without causing confusion, later Φ is still used to represent
the variance of the distribution when Sc

1 is used) will be a
function of γt , t = 1, . . . , w. Since the detection power of a
Wald test is in general inversely decided by the variance of
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922 Zeng et al.

the asymptotic distribution, we can minimize Φ and conse-
quently maximize the detection power of the test through
identifying the optimal set of weights. Here minimizing the
matrix Φ means minimizing an appropriately chosen scalar
coefficient as a measure of Φ.

Specifically, the following questions need to be answered:

1. Are the statistical properties of Sc
1 (e.g., its principal

eigenprojection, its statistical distribution properties,
etc.) equivalent to those of an individual signature (e.g.,
S1) and thus the statistic in Equation (6) can be adjusted
using Sc

1 in place of S1? The answer to this question is
not obvious because an individual signature is a sample
from a single population, while Sc

1 is a combination of
multiple samples from different populations (although
they share the same eigenprojection associated with the
largest eigenvalues).

2. If Sc
1 is statistically equivalent to an individual S1, what

are the optimal weights γ∗
t , t = 1, . . . , w, such that Φ

is minimized, and what is the expression of the adjusted
chi-squared statistic T in Equation (6) when the inte-
grated signature constructed by the optimal weights, S∗

1,
is used?

3. Can we put the integration procedure into a simple itera-
tive updating process? In other words, assume currently
we have an integrated signature S∗

1...k that is an integra-
tion of k individual signatures and in order to integrate
these k individual signatures with a new signature, say,
S1(k+1), can we simply integrate S∗

1...k with this new signa-
ture instead of considering all k individual signatures? If
the answer is yes, then the signature integration process
can be greatly simplified.

In the following section, these questions are discussed
and answered.

3. Multiple fault signature integration and enhancing

3.1. Equivalence of integrated and individual signatures
in the hypothesis testing

A close examination of the proof of Equation (6) (Schott,
1999) reveals that for the establishment of the asymptotic
normality of v, which is the basis of the testing, the only
requirements for S1 and S2 are their independence and
normality of vec(Λi), i = 1, 2. In that proof, first P̂i and
consequently P̂0 are expanded using the first-order Taylor
formula which holds for all positive definite symmetric ma-
trices (Tyler, 1981), and then, the expression of vi, i = 1, 2
is reached as a linear combination of vec(Λ1) and vec(Λ2).
Because of the independence (following the fact that S1 and
S2 are independent of each other) and normality of vec(Λi),
i = 1, 2, it is decided that vi and thus v are asymptotically
normally distributed, and the variance, as defined in Equa-
tion (3), is obtained as a linear combination of var{vec(Λ1)}
and var{vec( Λ2)}. This implies that S1 can be replaced by

any matrix S constructed from samples, which satisfies the
following.

1. A positive definite and symmetric matrix Σ, the nominal
population covariance matrix corresponding to S, can
be constructed accordingly such that S is a consistent
estimator ofΣand vec(S −Σ) has an asymptotic normal
distribution.

2. S is independent of S2.
3. The principal eigenprojection of Σ is equal to that of

Σ1.

Now let us turn to the properties of Sc
1 and see if it satisfies

the above listed conditions. First, from assumptions (A1)
to (A3) listed in Section 2.1, we have the following.

1. All the population covariance matrices Σ1t , t = 1, . . . ,
w and Σ2, are positive definite.

2. All the sample covariance matrices S1t , t = 1, . . . , w and
S2, are from independent samples generated by model
(2) and thus they are statistically independent of each
other.

3. Because we are looking at the multiple signatures of the
same fault, we have P11 = P12 = . . . = P1w, where P1t ,
t = 1, . . . , w, is the principal eigenprojection of Σ1t .

4. Let λ1t1, λ1t2, . . . λ1tm be the eigenvalues of Σ1t , t =
1, . . . , w, and q1t1, . . . , q1tm are the corresponding or-
thonormal eigenvectors. Since only a single fault is con-
sidered, we have λ1t1 � λ1t2 = . . . = λ1tm = αt , i.e., the
largest eigenvalue of each signature should be predom-
inant among its eigenvalues and the small eigenvalues
are equal to each other. These two properties are based
on assumption (A3). The robustness of the developed
method with respect to these two properties will be in-
vestigated in Section 4.2.

Let Σc
1 = ∑

w
t=1γt

∑
1t be the nominal population covari-

ance matrix corresponding to Sc
1, and λc

11, . . . , λc
1m and

qc
11, . . . , qc

1m are eigenvalues and eigenvectors of Σc
1. Based

on the above results, the following properties of Sc
1 can be

established.

(P1) Since Σ1t , t = 1, . . . , w, are all positive definite and
symmetric, Σc

1 is also positive definite and symmetric.
(P2) Because S1t is a consistent estimator of Σ1t ,

i.e., S1t →Σ1t , as N1t → ∞ (Schott, 2005), where
N1t is the sample size of S1t , Sc

1 = ∑
w
t=1γt S1t →∑

w
t=1γtΣ1t = Σc

1, meaning that Sc
1 is also a consistent

estimator of Σc
1.

(P3) According to the property of the “vec” opera-
tor, vec(Sc

1 − Σc
1) = ∑w

t=1 γt vec(S1t − Σ1t ). Because
vec(S1t− Σ1t ), t = 1, . . . , w, are independent of each
other (following the fact that S1t are independent)
and vec(S1t − Σ1t ) has an asymptotic normal distri-
bution, vec(Sc

1 − Σc
1) is also asymptotically normally

distributed (Rencher, 2002).
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Multiple fault signatures integration 923

(P4) Because S1t , t = 1, . . . , w, are all independent of S2,
Sc

1 is also independent of S2.
(P5) qc

11 = q111 = q121 = . . . = q1w1. It follows that Pc
1 =

qc
11qc′

11 = q1t1q′
1t1 = P1t , t = 1, . . . , w, where Pc

1 and
P1t are the principal eigenprojections of Σc

1 and Σ1t
respectively. This means that the principal eigenpro-
jection of Σc

1 is the same as that of every individual
signature.

(P6) λc
11 = ∑w

t=1γtλ1t1.

Clearly, from these properties, we can see that Sc
1 satis-

fies all the conditions to replace the individual signature
S1 in the test statistics in Equation (6). It is also worth
pointing out that Sc

1 = S1r , r ∈ {1, . . . , w}, as γ r = 1 and
γt = 0, for t 	= r , indicating that the test using Sc

1 covers
all the tests involving any individual fault signature. Thus,
optimal integration of signatures will lead to better or at
least the equivalent performance compared with individual
signatures.

3.2. Optimal integration of individual signatures

The previous section validates that the integrated signature
can be used as a fault signature and compared with the fault
symptom through rigorous hypothesis testing. This section
will give the optimal weights for the integrated signature
such that the variance of the corresponding asymptotic dis-
tribution, Φ, is minimized, and the adjusted chi-squared
statistic when the integrated signature constructed by the
optimal weights is used.

Clearly, when Sc
1 is used in place of S1 in the statistical

testing described in Section 2.1, all the expressions about
Φ have the same forms as defined in Section 2.1 except
that S1 is replaced by Sc

1, P1 is replaced by Pc
1, etc. Thus,

it is easy to see that Φ is determined by Pc
1, P2, P, P0 and

Ψi, i = 1, 2. (Note that now P2, P, P0 and Ψi refer to the
adjusted version since Sc

1 is used in place of S1.) Because
P2 and Ψ2 are only related with the symptom S2 and Σ2
which cannot be controlled beforehand, and Pc

1 and thus P
and P0 are all fixed for given signatures, these quantities are
not considered here. Consequently, Φ is only related with
Ψ1 and minimizing Φ is equivalent to minimizing Ψ1 or
more precisely, an appropriately chosen scalar measure of
Ψ1. The following theorem gives the specific expression of
Ψ1 when Sc

1 is used and the optimal weights γ ∗
t , t = 1, . . . ,

w, such that Ψ1 is minimized.

Theorem 1. When Sc
1 given by Equation (9) is used in place

of S1 in the statistical testing in Section 2.1, Ψ1 defined by
Equation (4) has the following expression:

Ψ1 ≈ η(
λc

11

)2 Pc
1 ⊗ (

Im − Pc
1

)
, (10)

where η = ∑
w
t=1γ

2
t ςt and ςt = λ1t1αt/n1t , n1t = N1t − 1.

Ψ1 is minimized as

γ ∗
t = ωt

γ1...w

, (11)

where ωt = n1t/αt and γ1...w = ∑w

r =1 ωr .

Equation (10) shows that actually Ψ1 consists of a scalar
coefficient part, η/(λc

11)2, and a matrix part, Pc
1 ⊗ (Im − Pc

1).
According to property (P5), the matrix part is fixed for given
signatures under the null case. Consequently, minimizing
Ψ1 is equivalent to minimizing the scalar coefficient. That
is how Equation (11) is obtained. The proof is given in
Appendix I. In practice, the small eigenvalue αt is estimated
by

α̂t = 1
m − 1

m∑
j=2

λ̂1tj, (12)

and accordingly, the optimal weights are estimated by
γ̂ ∗

t = ω̂t/γ̂1...w, t = 1, . . . , w, where ω̂t = n1t/α̂t and γ̂1...w =∑w
r=1 ω̂r .
From the theorem, we have the following observations.

1. To maximize the detection power of the statistical test-
ing, the importance of each individual fault signature
S1t , t ∈{1, . . . , w} is determined by its sample size and
small eigenvalues, as indicated by Equation (11). Since it
has been pointed out that α̂t actually represents the av-
erage noise level of S1t , this result is intuitive because a
larger sample size and lower noise level correspond with
greater accuracy of the estimate of eigenprojection from
a fault signature.

2. When α1 ≈ α2 ≈ . . . ≈ αw, γ ∗
t ≈ n1t/

∑
w
r=1n1r , meaning

that the optimal weights are only related with sample
sizes of signatures. In other words, the standard method
of setting weights based solely on sample size works only
when the noise level is similar for all the fault signatures.
However, this is, obviously, a restrictive case because in
practice it is common that the noise level changes from
sample to sample due to different operators, measuring
instruments and other physical conditions in which a
sample is obtained. Thus, the weights we find are a more
general solution for optimally integrating the multiple
signatures.

Accordingly, the integrated signature constructed by the
optimal weights is

S∗
1 =

w∑
t=1

γ̂ ∗
t S1t . (13)

Given the integrated signature S∗
1 as defined in Equation

(13) and the symptom S2, the hypothesis testing for match-
ing between them becomes H0: S∗

1 and S2 associate the same
fault or P∗

1 = P2 vs. H1: S∗
1 and S2 associate different faults

or P∗
1 	= P2. The corresponding formula to calculate the

chi-squared statistic follows the same form as Equation (7),
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924 Zeng et al.

that is

T∗ = u∗(F∗Θ̂
∗
F∗)+u∗, (14)

where u∗, F∗ and Θ̂
∗

are the counterparts of u, F and Θ̂,
respectively, in Equation (7) with terms associated with
S1 being replaced by those associated with S∗

1. For exam-
ple, P̂∗

1 = q̂∗
11q̂∗

11, P̂∗ = P̂∗
1 + P̂2 and Γ̂

∗
0 = (q̂∗

2, q̂∗
3, . . . , q̂∗

m),
where q̂∗

j is the eigenvector of P̂∗ corresponding to its jth

largest eigenvalue. The only exception is that Ξ̂
∗
1, which sat-

isfies Θ̂
∗ = diag(Ξ̂

∗
1, Ξ̂2) + V∗, has an expression different

from Equation (8):

Ξ̂
∗
1 =

m∑
l=2

η̂∗

λ̂∗2
11

Γ̂
∗
0q̂∗

1l q̂
∗
1lΓ̂

∗
0, (15)

where η̂∗ = ∑
w
t=1γ̂

∗2
t ς̂t and ς̂t = λ̂1t1α̂t/nt1. Note that, in

the same way, we can calculate the chi-squared statistic for
any linearly combined signature Sc

1.

3.3. Iterative updating procedure for signature integration

To calculate the optimal integrated signature in Equation
(13) and the statistic in Equation (14), all the w individ-
ual signatures from S11 to S1w are needed. However, this
integration can be significantly simplified through an itera-
tive updating process. Specifically, denote S∗

1...k and S∗
1...k+1

as the optimal integrated signatures as defined in Equa-
tion (13) for {S11, S12, . . . , S1k} and for {S11, S12, . . . , S1k,
S1(k+1)}, k = 1, . . . , w, respectively, then we have the fol-
lowing iterative relationship:

S∗
1...k+1 = γ̂1...k

γ̂1...k+1
S∗

1...k + ω̂k+1

γ̂1...k+1
S1(k+1), (16)

where γ̂1...k = ∑k
t=1ω̂t , γ̂1...k+1 = γ̂1...k + ω̂k+1 and ω̂t is as

defined in Equation (11).
Also,

η̂1...k+1 =
(

γ̂1...k

γ̂1...k+1

)2

η̂1...k +
(

ω̂k+1

γ̂1...k+1

)2

ς̂k+1, (17)

where η̂1...k = ∑k
t=1γ̂

∗2
t ς̂t , η̂1...k+1 = η̂1...k + γ̂ ∗2

k+1ς̂k+1 and ς̂t
is as defined in Equation (15). The proof is given in Ap-
pendix II.

This clearly implies that the three summary terms S∗
1...k,

η̂1...k and γ̂1...k are sufficient to substitute all the k individ-
ual fault signatures S11, S12, . . . , S1k in terms of signature
integration. Thus, we can discard all the fault signatures of
the same fault from the fault library and only keep these
three summary terms extracted from them. When a new
fault signature, S1(k+1) is obtained, its effect can be easily
combined with S∗

1...k to form an integrated signature which
is equivalent to that constructed based on all the k + 1 in-
dividual fault signatures. This makes it possible to continu-

ously update the fault library as the manufacturing process
proceeds.

With this iterative signature integration, the procedure
of the self-improving variation source identification can be
summarized as follows. Assume an integrated signature S∗

1
exists in the fault library, and a symptom S2 is newly ob-
tained. First, we need to perform the hypothesis testing
given in Section 3.2 based on S∗

1, η̂∗, S2 and N2. Specifi-
cally, get the value of T∗ according to Equation (14). Then
compare T∗ with the critical value of the test, χ2

1−α,v, where
α is a selected significance level such as 0.05, 0.01, etc., and
v is the degrees of freedom as defined for Equation (6). If
T∗is larger than the critical value, then we claim that there
is significant statistical evidence against H0 and thus a dif-
ferent fault occurs. Otherwise we claim that it is from the
same fault.

In the second step, if S2 is decided to be from the same
fault as S∗

1, then we can view S∗
1 as S∗

1...k and S2 as S1(k+1)
and then use Equations (16) and (17) to update S∗

1 and take
the resulting S∗

1...k+1 as the new S∗
1. If S2 is decided to be

from a different fault, then other signatures in the library
will be used to match with S2 following similar steps as
above. If S2 does not match any existing signatures in the
library, then the process should be inspected to decide if S2
indicates a novel fault. If yes, it is entered in the library as
a new signature.

In the next section, a numerical study is conducted to
demonstrate the effectiveness and robustness of the pro-
posed method.

4. Numerical study

4.1. Effectiveness of the proposed method

To show the effectiveness of the proposed method, the
performances of individual fault signatures, combined sig-
nature weighted only by sample sizes, and the proposed
integrated signature are compared in 18 scenarios. The per-
formance measures are type I error and type II error proba-
bilities of the fault identification procedure. The type I error
probability in variation source identification is defined as
the probability that a symptom of the same fault will be
wrongly rejected and be claimed as a new fault, which gives
a “false alarm” of the occurrence of a novel fault. The type
II error probability is the probability that a symptom of a
different fault will be falsely accepted as the signature of
the same fault, which means that we miss the opportunity
of detecting a new fault.

In this study, we will use the linear model in Equation (1)
to generate the sample covariance matrices (signatures and
symptoms). The variable y is a 5 × 1 quality measurement
vector and f is a 3 × 1 vector that represents the variation
sources. ε is a 5 × 1 vector that models the system back-
ground noise with a covariance matrix σ 2

ε I. The matrix A
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is assumed to be

A =




sin θ cos θ 0 0 0
0 1 0 0 0
0 0 1 0 0




′

,

where the angle θ is used to model the relative variation
direction between the first two faults. Obviously, if θ is
close to zero, the variation direction of these two faults will
be very close and thus we will have a large type II error
probability in variation source identification. If θ is close to
90◦, then the impacts of these two process faults are quite
different and thus we will have small type II error probabil-
ity. To better demonstrate the advantage of the integrated
signature, we choose θ = 4.5◦ in this study.

Assume there are three fault signatures of the first fault
available in the fault library, with population covariance
matrices Σ11, Σ12 and Σ13. The diagonal components of
Σ1t , t = 1, 2, 3, are σ 2

1tk, k = 1, 2, 3, representing, respec-
tively, the magnitudes of the three faults corresponding to
Σ1t . Since only the first fault happens, σ 1tk, k = 2, 3, is set
to be zero. The noise variances of the three signatures, σ 2

ε1
,

σ 2
ε2

and σ 2
ε3

, are 0.0062, 0.0122 and 0.0162 respectively.
A total of 18 scenarios are generated in the simulation.

(σ 111, σ 121, σ 131) takes values of (0.05, 0.05, 0.05) and (0.05,
0.1, 0.2) to simulate the spread of the fault magnitude
among the fault signatures. (N11, N12, N13) takes values
of nine combinations to simulate the different sample sizes
among the fault signatures. 2000 Monte Carlo cases are
generated for each scenario.

In each case, three fault signatures, S11, S12 and S13, of
the first process fault are randomly generated based on
the selected parameters. The combined signature weighted
only by sample sizes, SN

1 , can be calculated by Equation

(9) with the weights γ̂t = N1t/
∑3

i=1 N1i, t = 1,2,3. The in-
tegrated fault signature S∗

1 can be obtained by Equation
(13) or Equation (16). Furthermore, two symptom covari-
ance matrices SInew and SIInew(corresponding to the first
and second process faults respectively) are generated and
compared with S11, S12, S13, SN

1 and S∗
1 separately. The

generation of the two symptoms follows: (i) the variance
of the fault is uniformly distributed between 0.05 and 0.5;
(ii) the sample size is uniformly distributed between 25 and
100; and (iii) the noise variance is fixed at 0.012. More-
over, the hypothesis testing given in Section 2.1 is applied to
match the individual signatures and fault symptoms, while
that given in Section 3.2 is used to match SN

1 and S∗
1 with

symptoms.
To calculate the type I error and the type II error of the

matching with a fault signature, say, S11, the test statistic T
based on S11 and a fault symptom (either SInew or SIInew)
will be calculated and compared with the critical value of
the test, χ2

1−α,v, where the degrees of freedom of the chi-
square test v = 4 and the significance level α is set at 0.05. If
T is larger than the critical value, then the null hypothesis
should be rejected, and we decide that the chosen fault sig-
nature and the fault symptom represent two different faults.
Otherwise we decide that the chosen fault signature and the
fault symptom associate the same fault. Two variables, CT1
and CT2, are used to count the number of cases where the
null hypothesis is rejected when SInew and SIInew are the
fault symptoms, respectively. Thus, the final type I and type
II error probabilities can be calculated by CT1/NC and
1 − CT2/NC respectively.

The simulation results are listed in Table 1, where α1 and
β1 denote the smallest type I and type II error probabili-
ties of the signature matching when individual signatures
are used, αN and βNdenote those when SN

1 is used and α∗

Table 1. Performance evaluation of the fault signatures.

σ1, σ2, σ3 N1,N2,N3 α1 β1 αN βN α∗ β∗

0.05, 0.05, 0.05 25,25,25 0.1220(1) 0.2890(1) 0.0925 0.3855 0.0800 0.1725
25,50,75 0.0770(3) 0.2660(1) 0.0855 0.2155 0.0860 0.0845
25,75,125 0.0610(3) 0.2610(1) 0.0820 0.1045 0.0900 0.0440
50,50,50 0.0750(2) 0.0810(1) 0.0770 0.1370 0.0730 0.0360
50,75,100 0.0565(2) 0.0785(1) 0.0785 0.0865 0.0675 0.0305
50,100,150 0.0520(3) 0.0930(1) 0.0810 0.0500 0.0740 0.0285
100,100,100 0.0650(1) 0.0265(1) 0.0840 0.0360 0.0695 0.0135
100,125,150 0.0640(1) 0.0250(1) 0.0915 0.0285 0.0770 0.0210
100,150,200 0.0600(2) 0.0240(1) 0.0775 0.0250 0.0810 0.0205

0.05, 0.1, 0.2 25,25,25 0.1035(1) 0.0850(3) 0.0730 0.0395 0.0645 0.0315
25,50,75 0.0590(3) 0.0210(3) 0.0600 0.0175 0.0575 0.0170
25,75,125 0.0675(2) 0.0140(3) 0.0725 0.0120 0.0705 0.0115
50,50,50 0.0740(1) 0.0180(3) 0.0715 0.0130 0.0630 0.0110
50,75,100 0.0660(3) 0.0125(3) 0.0665 0.0125 0.0650 0.0130
50,100,150 0.0580(3) 0.0165(3) 0.0660 0.0155 0.0725 0.0145
100,100,100 0.0615(3) 0.0120(3) 0.0575 0.0105 0.0595 0.0110
100,125,150 0.0545(3) 0.0160(3) 0.0585 0.0140 0.0650 0.0130
100,150,200 0.0615(2) 0.0090(3) 0.0680 0.0085 0.0745 0.0085
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and β∗ are those when S∗
1 is used. One point needed to

be mentioned is that there is no individual signature giving
uniformly better results than the rest of the individual signa-
tures. Thus, the values of α1 and β1 in the table are obtained
from different individual signatures which are indicated in
the parentheses.

From Table 1, we can see that all the tests produce rea-
sonable type I error probabilities that are around 0.10 or be-
low. Comparatively, individual signatures lead to relatively
higher type I error than the two combined signatures when
the sample size is small (e.g., N11 = N12 = N13 = 25), but
in most cases, the three exhibit similar performances. The
type II errors resulted from S∗

1 are uniformly the smallest
in all scenarios and in particular, impressively smaller than
those from individual signatures and SN

1 when sample sizes
and fault magnitudes are small. The type II errors resulted
from SN

1 are slightly smaller than those from individual sig-
natures when the fault magnitudes are big, but larger in two
thirds of the scenarios when fault magnitudes are small. It
means that combining the signatures based solely on sam-
ple sizes cannot necessarily lead to a better performance
than using individual signatures; instead, the performance
of the test may even be worse under some conditions. Since
a smaller Type II error corresponds with higher detection
power, this result validates that the proposed integrated sig-
nature is the desired one to improve the detection power of
the signature matching.

Moreover, we can also find that the individual signa-
ture that gives the smallest errors is changing with sce-
narios. This implies that in practice, to achieve the best
performance of individual signatures, we cannot just casu-
ally pick one from the available fault signatures or choose
one by some simple criterion such as sample size and keep
using it in signature matching. Rather, a selection proce-
dure is needed to identify the optimal signature in each
case and this will, obviously, bring many difficulties. Thus,
actually the good performance, if there is one, of individual
signatures in the simulation is hard to be realized. This adds
to the strength of the proposed integrated signature.

4.2. Robustness of the proposed method to assumptions

There are two critical conditions leading to Theorem 1 as
mentioned in Section 3.1: C1) the largest eigenvalue of each
signature should be predominant among its eigenvalues;
and C2) the small eigenvalues of each signature are equal
to each other. Accordingly, two measures about the eigen-
values of the signatures are created to represent how these
two conditions are satisfied, that is, the ratio of the largest to
the second largest eigenvalue of each signature (for simplic-
ity, later we call this the first/second eigenvalue ratio) and
the Coefficient Of Variation (COV) of the small eigenval-
ues, which is defined as the ratio of the standard deviation
of the small eigenvalues to their mean. In this study, the
robustness of the proposed method is evaluated by the dif-
ference between the true significance level (estimated from

simulations) and the nominal significance level (α = 0.05)
under different values of the first/second eigenvalue ratio
and COV. Using the difference between the true and nomi-
nal significance level as a measure of the robustness of a hy-
pothesis test has been adopted by many studies (e.g., Schott
(1999)) because the difference represents the effectiveness
of the asymptotic distribution as an approximation to the
actual null distribution of the statistic in Equation (14).

The same linear model and A matrix as defined in Section
4.1 are used to generate the sample covariance matrices in
the simulation. Still, three fault signatures of the first pro-
cess fault are assumed, with fault magnitude σ 111 = σ 121 =
σ 131 = 0.05 and sample size N11 = 200, N12 = 100, N13 =
300. The noise covariance matrix of the signatures is now
assumed to bear the form Σε = σ 2

ε × diag[κ, 1, 1, 1, 1] (the
noise covariance matrix of the ith, i = 1, 2, 3, signature is
σ 2

εi
× diag[κ i, 1, 1, 1, 1]). The first/second eigenvalue ratio

can be controlled by both σ 2
ε and κ, whereas the COV is

only determined by κ.
Since the signatures have the same structure, their

eigenvalues will exhibit similar characteristics. Thus, the
first/second eigenvalue ratio and the COV of one signa-
ture, e.g., S13, are used to generate the cases. The following
two scenarios are considered: Scenario 1 is designed to show
the robustness of the proposed method to C1 under differ-
ent levels of COV. Specifically, the COV of S13 is fixed by
setting κ1 = κ2 = κ3 = 1, 3 or 10 and under each setting,
(σ 2

ε1
, σ 2

ε2
, σ 2

ε3
) = ξ× (0.0062, 0.0122, 0.0162), where ξ is a co-

efficient whose values are chosen to make the first/second
eigenvalue ratio of S13 be a series of values between one
and 40. Correspondingly, Scenario 2 is designed to show
the robustness of the proposed method to C2 under differ-
ent levels of the first/second eigenvalue ratio. The way to
realize this is a little bit complicated: for a certain level of
the first/second eigenvalue ratio of S13, a series of values
of the associated COV which are between 0.1 and 1.6 are
obtained by setting κ1 = κ2 = κ3 = 1, 2.5, 4, . . . , 16 and for
each of these values, the coefficient ξ is chosen to maintain
the first/second eigenvalue ratio at the given level.

In each case of the two scenarios, three fault signatures
are first generated and the integrated signature S∗

1 values
are calculated. Then, a symptom of the first process fault is
generated with fault magnitude uniformly distributed be-
tween 0.05 and 0.5 and sample size being 200. The noise
covariance matrix of the symptom is still σ 2

ε I with σ 2
ε =

0.01. The symptom will be matched with S∗
1through the hy-

pothesis testing in Section 3.2 and the corresponding type
I error probability is obtained through 2000 simulations.

The resulted type I error probabilities of signature match-
ing for scenarios 1 and 2 are shown in Figs. 1(a) and 1(b)
respectively. In scenario 1, the three levels of COV are
0.14, 0.67 and 1.38, whereas in scenario 2, the levels of
first/second eigenvalue ratio are three, five and ten. Accord-
ing to Fig. 1(a), under each level of COV, the type I error
diminishes rapidly to be around 0.05 as the first/second
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Fig. 1. Type I error probabilities in the simulation: (a) scenario 1; and (b) scenario 2.

eigenvalue ratio increases, and a smaller COV level cor-
responds with a faster degradation of the error, indicat-
ing that the smaller the COV, the stronger the robustness
of the proposed method to C1. Moreover, even under the
largest level of COV, the type I error falls within 0.1 when
the first/second eigenvalue ratio is as large as ten. From
Fig. 1(b), we can see that the type I error increases and
deviates from 0.05 more and more with the increases of
COV, and a larger first/second eigenvalue ratio leads to a
smaller type I error, meaning that the larger the first/second
eigenvalue ratio, the stronger the robustness of the proposed
method to C2. It is also clear that even in the worst case
where the first/second eigenvalue ratio is as small as three,
the type I error is within 0.2.

Essentially, the first/second eigenvalue ratio represents
the Signal-to-Noise Ratio (SNR) in a signature, whereas the
COV of small eigenvalues indicates the differences in noise
impact on different measurement dimensions. It is very dif-
ficult, if not impossible, to derive an analytical criteria on
the robustness of the proposed method with respect to the
SNR and the noise difference. However, based on this study,
we can conclude that in common cases where the SNR is
not very small and the noise difference is not very big, the
asymptotic distribution of the statistic in Equation (14) will
approximate its actual distribution reasonably and thus the
proposed method will work.

5. Conclusions and future work

The data-driven variation source identification methodol-
ogy is an important technique for production quality im-
provement in large-scale complex manufacturing process.
This paper developed a linearly weighted integration pro-

cedure to combine multiple fault signatures of the same
fault to improve the detection power of the fault identifi-
cation procedure. It is found that the optimal weights for
the fault signatures are related with their sample sizes and
small eigenvalues. A numerical study is also presented to
demonstrate the effectiveness of the integrated signature in
terms of type I and type II errors of the identification pro-
cedure. Moreover, the robustness of the proposed method
with respect to two critical assumptions is studied and it is
shown that the proposed method can be commonly used in
practice.

This research furnished the existing variation source
identification methodology with a powerful tool to improve
the accuracy of the fault signatures. There are some in-
teresting open issues related with this work. First, in this
study, we assume all the fault signatures are resulted from
one single fault. However, the proposed method can be ex-
tended to multiple faults case under certain conditions. Ac-
tually we can prove that if the A matrix in model (1) is
orthogonal, the proposed method can be easily extended
to multiple fault cases without loss of strength. The fact
that is critical to make the extension possible is that the sig-
nificant eigenvectors of the fault signatures resulted from
an orthogonal (and also normalized) A will be the same
and thus any combined signature will have the similar sim-
ple properties as described in Section 3.1. However, if A is
not orthogonal, the relationship between a combined sig-
nature and the individual fault signatures on which it is
constructed may become very complex and hard to formu-
late. Consequently, the optimal weights will be difficult to
define and obtain. New strategies are, obviously, needed
to solve these problems to integrate the multiple fault sig-
natures produced in multiple fault cases. Another issue is
that, as we pointed out in the paper, the developed method
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928 Zeng et al.

essentially requires a large SNR or small noise difference.
Thus, it might be interesting to study comprehensively how
small the SNR and how large the noise difference can go
without deteriorating the performance of the tests to an un-
acceptable level. The numerical study presented in this pa-
per is a rough analysis and more details need to be explored
to form some rule-of-thumb guidelines for practice. This
seems a challenging problem considering the large number
of parameters that need to be considered. Finally, because
errors in the testing for signature matching are unavoid-
able, it is also interesting and useful to study the appro-
priate way to handle the testing errors and corresponding
signatures.
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Appendix

Appendix I

Proof of Theorem 1.
The following derivations are based on the properties of

Sc
1 stated in Section 3.1. Let us first derive the specific ex-

pression of Ψ1 for any weight γ t , t = 1, . . . , w. By Equation
(5):

H1 =
m∑

l=2

(
λc

11 − λc
1l

)−1(qc
11qc′

11 ⊗ qc
1lq

c′
1l

)
.
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Because λ1t1 �λ1tl, t = 1, . . . , w, l = 2, . . . , m, it is easy
to get that λc

11 � λc
1l and thus:

H1≈
(
λc

11

)−1
{

qc
11qc′

11⊗
m∑

l=2

qc
1lq

c′
1l

}
=(

λc
11

)−1{Pc
1 ⊗ (

Im−Pc
1

)}
.

(A1)
Let Λ1 = Sc

1 − Σc
1, then:

var{vec(Λ1)}
=

w∑
t=1

γ 2
t var{vec(S1t − Σ1t )}

=
w∑

t=1

γ 2
t

n1t
(Im2 + Kmm)(Σ1t ⊗ Σ1t )

=
w∑

t=1

γ 2
t

n1t
(Σ1t ⊗ Σ1t ) +

w∑
t=1

γ 2
t

n1t
Kmm(Σ1t ⊗ Σ1t )

=
w∑

t=1

γ 2
t

n1t
(Σ1t ⊗ Σ1t ) +

w∑
t=1

γ 2
t

n1t
(Σ1t ⊗ Σ1t )Kmm.

(A2)

Let

w∑
t=1

γ 2
t

n1t
(Σ1t ⊗ Σ1t ) = ∆,

then var{vec(Λ1)} = ∆ + ∆Kmm and

H1∆ =
w∑

t=1

γ 2
t

n1tλ
c
11

{
Pc

1 ⊗ (
Im − Pc

1

)}
(Σ1t ⊗ Σ1t )

=
w∑

t=1

γ 2
t

n1tλ
c
11

{
Pc

1Σ1t ⊗ (
Im − Pc

1

)
Σ1t

}
.

Since Σ1t ≈ λ1t1P1t + αt (Im − P1t ), P2
1t = P1t , P1t (Im −

P1t ) = 0 and Pc
1 = P1t , t = 1, . . . w:

Pc
1Σ1t = λ1t1Pc

1 and
(
Im − Pc

1

)
Σ1t = αt

(
Im − Pc

1

)
.

Thus,

H1∆ =
w∑

t=1

γ 2
t

n1tλ
c
11

{
λ1t1Pc

1 ⊗ αt
(
Im − Pc

1

)}

=
w∑

t=1

γ 2
t λ1t1αt

n1tλ
c
11

{
Pc

1 ⊗ (
Im − Pc

1

)}

H1∆H1 =
w∑

t=1

γ 2
t λ1t1αt

n1t
(
λc

11

)2

{
Pc

1 ⊗ (
Im − Pc

1

)}{
Pc

1 ⊗ (
Im − Pc

1

)}

=
w∑

t=1

γ 2
t λ1t1αt

n1t
(
λc

11

)2

{
Pc

1 ⊗ (
Im − Pc

1

)}

= η(
λc

11

)2

{
Pc

1 ⊗ (
Im − Pc

1

)}
. (A3)

However,

H1�KmmH1

=
w∑

t=1

γ 2
t λ1t1αt

n1t
(
λc

11

)2

{
Pc

1 ⊗ (
Im − Pc

1

)}
Kmm

{
Pc

1 ⊗ (
Im − Pc

1

)}

=
w∑

t=1

γ 2
t λ1t1αt

n1t
(
λc

11

)2

{
Pc

1 ⊗ (
Im − Pc

1

)}{(
Im − Pc

1

) ⊗ Pc
1

}
Kmm

=
w∑

t=1

γ 2
t λ1t1αt

n1t
(
λc

11

)2

{
Pc

1

(
Im − Pc

1

) ⊗ (
Im − Pc

1

)
Pc

1

}
Kmm

= 0. (A4)

By Equation (4):

Ψ1 = H1var{vec(Λ1)}H1 = H1(∆ + ∆Kmm)H1

= H1∆H1 + H1∆KmmH1 = H1∆H1,

which gives Equation (10).
Let C = η/(λc

11)2. Thus, the optimal weights can be ob-
tained through setting the first derivatives of C to be zero,
that is

∂C
∂γt

= 0, t = 1, 2, . . . , w. (A5)

Let λc
11 = f = ∑w

r=1γrλ1r1, then

C = η

f 2
= 1

f 2

{
λ1t1αt

n1t
γ 2

t +
∑
r 	=t

λ1r1αr

n1r
γ 2

r

}
. (A6)

Consequently,

∂C
∂γt

= ∂(f −2)
∂γt

η

+ ∂
{
(λ1t1αt/n1t )γ 2

t + ∑
r 	=t (λ1r1αr/n1r )γ 2

r )
}

∂γt

1
f 2

= −2f −3λ1t1η + 2f −2 λ1t1αt

n1t
γt .

And the solution for Equation (A5) is

γ ∗
t = η∗

f ∗
n1t

αt
,

where

η∗ =
w∑

r=1

γ ∗2
r λ1r1αr

n1r
and f ∗ =

w∑
r=1

γ ∗
r λ1r1.

It follows that,

γ ∗
1 : γ ∗

2 : . . . : γ ∗
w = n11

α1
:

n12

α2
: . . . :

n1w

αw

. (A7)

Based on Equation (A6), it is easy to validate that C is
unchanged for any two sets of weights: {γ t , t = 1, . . . , w}
and {cγ t , t = 1, . . . , w}, where c is an arbitrary constant.
Thus, we can normalize the weights in Equation (A7) and
then Equation (11) results. �
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Appendix II

Proof of the iterative updating procedure in Section 3.3.
As k = 1, γ1 = ω̂1, γ12 = ω̂1 + ω̂2, and thus

S∗
12 = ω̂1

ω̂1 + ω̂2
S11 + ω̂2

ω̂1 + ω̂2
S12 = γ̂ ∗

1 S11 + γ̂ ∗
2 S12,

η̂12 =
(

ω̂1

ω̂1 + ω̂2

)2

ς̂1 +
(

ω̂2

ω̂1 + ω̂2

)2

ς̂2 = γ̂ ∗2
1 ς̂1 + γ̂ ∗2

2 ς̂2.

Obviously, S∗
12 and η̂12 are the same as S∗

1 and η̂∗
in Equation (13) and Equation (15) respectively when
w = 2.

Assume S∗
1...kand η̂1...k are the same as S∗

1 and η̂∗ when
w = k, that is

S∗
1...k =

k∑
t=1

γ̂ ∗
t S1t where γ̂t

∗ = ω̂t

γ̂1...k
,

η̂1...k =
k∑

t=1

γ̂ ∗2
t ς̂t .

Then by Equation (16):

S∗
1...k+1 = γ̂1...k

γ̂1...k+1

k∑
t=1

ω̂t

γ̂1...k
S1t + ω̂k+1

γ̂1...k+1
S1k+1

=
k∑

t=1

ω̂t

γ̂1...k+1
S1t + ω̂k+1

γ̂1...k+1
S1k+1

=
k+1∑
t=1

ω̂t

γ̂1...k+1
S1t

=
k+1∑
t=1

γ̂ ∗
t S1t .

By Equation (17):

η̂1...k+1 =
(

γ1...k

γ1...k+1

)2 k∑
t=1

(
ω̂t

γ1...k

)2

ς̂t +
(

ω̂k+1

γ1...k+1

)2

ς̂k+1

=
k∑

t=1

(
ω̂t

γ1...k+1

)2

ς̂t +
(

ω̂k+1

γ1...k+1

)2

ς̂k+1

=
k+1∑
t=1

γ̂ ∗2
t ς̂t .

These are the same as S∗
1 and η̂∗ when w = k+1. Thus,

the procedure holds. �
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