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The recent trends in manufacturing toward modularity and flexibility result in complex multistage manufacturing processes that
consist of many interrelated workstations. In such processes, it is highly desirable to differentiate between local and propagated
variations, and implement process variability monitoring and reduction. In this paper, attention is focused on the properties of a
widely used regression-adjustment-based method in the monitoring of variation propagation in multistage manufacturing processes.
Particularly, the impacts of measurement errors and regressor selection on the monitoring scheme are investigated, and conclusions
which can help guide the use of this method are summarized. Numerical examples are also presented to validate the analysis.
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1. Introduction

The growing demand for products with both an improved
functionality and a shorter time to market in order to
be successful in today’s fiercely competitive marketplace
places an enormous strain on production systems. Man-
ufacturing paradigms such as modular production sys-
tems (Rogers and Bottaci, 1997), cellular manufacturing
(Hyer and Wemmerlov, 2002) and reconfigurable manu-
facturing (Koren et al., 1999) have been developed and
adopted in recent years and they are able to achieve un-
precedented levels of flexibility and responsiveness. As a
result, it is increasingly common to find many complex
and modularized workstations linked together to create
the final product in a manufacturing environment. Figure
1 illustrates a manufacturing system consisting of 11 sta-
tions and capable of producing five different types of mo-
tor reducers. Because fabrication errors are carried by the
product from one station to the next station, the outgo-
ing product quality at a particular station is determined
not only by various local disturbances at that station,
such as thermal error cutting-force induced error and ma-
chine geometric error, but also by the propagated varia-
tions from previous stations such as the datum error due to
preceding cutting operations. The final product variation
is the accumulation of variations from all manufacturing
stations.

∗Corresponding author

The local and propagated quality variations can be illus-
trated by a simple two-step machining example, as shown
in Fig. 2. The workpiece is a cube of metal (the front view is
shown). Surface C of the workpiece is milled in the first step
(Fig. 2(a)). A hole is drilled on surface D using surface C as
the primary datum (Fig. 2(b)) in the second step. Clearly,
the resulting hole is not perpendicular to surface D (Fig.
2(c)). In case 1 illustrated in Fig. 2, the geometric error asso-
ciated with the hole is caused by the local fixture error in the
drilling operation. However, in case 2, the error associated
with the hole is not caused by the drilling operation, but
by the propagated error from the milling operation in the
first step. In general, the Quality Characteristics (QCs) at a
certain stage can be influenced not only by the errors at the
current stage, but also by its preceding QCs in a multistage
manufacturing process. One can imagine that process vari-
ation will propagate along the physical process topology
and form a network of variation flow.

The variation propagation poses significant new chal-
lenges for process variability monitoring and reduction.
Without considering the variation propagation conven-
tional statistical monitoring methods are not able to dif-
ferentiate between local and propagated variations. Thus,
a significant number of false alarms can be generated at
a given stage, i.e., the monitoring scheme can mistake the
propagated variation as a local variation and then generate
an alarm that is due to other stages. An effective statistical
monitoring scheme for variability monitoring and reduc-
tion should be able to pinpoint the variation sources to a
particular stage.

0740-817X C© 2008 “IIE”
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110 Zeng and Zhou

Fig. 1. A multistage process for motor reducers.

Due to rapid developments in information and sensing
technologies, an abundance of data is now readily available
in manufacturing processes. Total inspection for discrete
processes at each intermediate operation and very high sam-
pling rates are no longer rare in practice. For example, in
autobody assembly processes, 100% dimensional inspection
has been achieved through in-line optical coordinate mea-
surement machines (Ceglarek and Shi, 1995). With these
measurements at intermediate stages, if we define the QCs
as nodes, a general multistage manufacturing process has a
physical layout as shown in Fig. 3, where q QCs, Qj, j = 1,
2, . . . , q, are distributed at n stages.

This profusion of process/product measurement data
provides an opportunity for effective process control of
multistage manufacturing processes. In fact, some research
efforts have already been made to conquer this problem.
These methods can be roughly classified as being either an-
alytical methods, those based on an off-line physical model
of the process, or as data-driven techniques, those based on
the statistical analysis of historical process data. The analyt-
ical method approach is represented by the recently devel-
oped “stream of variation” methodologies which focus on

Fig. 2. A two-step maching process: (a) front view of the work-
piece; (b) drilling of the hole; and (c) non-perpendicular nature
of the hole.

Fig. 3. Layout of a general multistage process.

dimensional variation analysis of sequential discrete ma-
chining (e.g., Huang et al. (2000), Djurdjanovic and Ni
(2001) and Zhou et al. (2003)) and assembly processes (e.g.,
Ding et al. (2000) and Jin and Shi (1999)). They are effective
in describing the interactions between different units but re-
quire a thorough physical understanding of the process that
might not be generally available. The existing data-driven
techniques include the regression control chart of Mandel
(1969) and its updated version, the cause-selecting control
chart (Zhang, 1985; Wade and Woodall, 1993), where the
outgoing quality is monitored after adjustment for the effect
of the incoming quality. As an extension, Hawkins (1991,
1993) proposed the methodology and studied the design
of the related procedures for monitoring correlated QCs
based on regression adjustment in cascade processes. It was
suggested that every QC is monitored by a correspond-
ing regression-adjusted chart which is built based on the
(standardized) residual, Zj = Qj − Q̂j, j = 1, . . . , q, called
regression-adjusted variables, which occur when Qj is re-
gressed on all its preceding QCs. Then Zj being out of
control can be directly interpreted as faults occurring on
QC j. The idea of regression adjustment has been widely
accepted as a good way to deal with multistage quality con-
trol problems and is the basis of several papers in the litera-
ture. For example, Zantek et al. (2002) measured the impact
of each stage’s performance on the variation in intermedi-
ate and final product quality. Hauck et al. (1999) consid-
ered process monitoring and diagnosis based on regression
adjustment in multivariate cases, and Fong and Lawless
(1998), Agrawal et al. (1999) and Lawless et al. (1999),
analyzed the variation transmission in key characteristics
as discrete parts move through a multistage production
process.

Despite the general effectiveness of the regression-
adjustment-based method shown in the existing studies, its
properties in the monitoring of variability in practice are
not comprehensively studied. There are two potential is-
sues involved.

1. In most of the data-driven methods, the QCs Qj, j = 1,
. . . , q, are often assumed to be directly observable. How-
ever, in practice, the QCs can never be measured exactly
and thus the observed value, Xj, is actually a combina-
tion of Qj and a non-zero measurement error εj. It has
been pointed out that the least squares estimate in the
presence of measurement errors is inconsistent (Fuller,



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

ity
 o

f W
is

co
ns

in
 M

ad
is

on
] A

t: 
20

:4
2 

17
 D

ec
em

be
r 2

00
7 
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1987). As a result, the diagnostic capability of the qual-
ity control procedures based on least squares regression
may be degraded by the bias of estimation. Actually the
existence of measurement errors has been highlighted in
the literature (Agrawal et al., 1999; Lawless et al., 1999),
but the influence of these errors on the monitoring of
QCs in multistage manufacturing processes has not been
explored.

2. For a complex process consisting of many QCs, regres-
sor selection and its impact on the monitoring scheme
are also very important issues. However, little work has
been reported on this topic. In most cases, for every QC j,
people just monitor its residual that is resulted from the
adjustment of all its preceding QCs (e.g., Hawkins (1993)
and Zantek et al. (2006)) without the pre-examination
of the subset of QCs that really influences j. Thus,
it is necessary to investigate the possible advantages
or disadvantages if a regressor selection procedure,
which is usually an indispensable part in the application
of regression, is added into the regression adjustment
method.

This article focuses on the properties of a regression-
adjustment-based method in the monitoring of variability
in multistage manufacturing processes. Particularly, we in-
vestigate the impacts of measurement errors and regressor
selection on the existing monitoring scheme. It is found that
with the measurement errors, the regression-adjusted con-
trol chart of every QC responds not only to the change of its
local variation, but also to that of its preceding local vari-
ations. As a result, the preceding local variations become
sources of false alarms and misdetection of the monitoring
scheme. Furthermore, we find that the impacts of measure-
ment errors and regressor selection are actually mingled
together in that without measurement errors, regressor se-
lection (either with or without) will not affect the monitor-
ing procedure. However, when measurement errors exist,
regressor selection will come into play and influence the per-
formance of the monitoring scheme. We compare the per-
formances of two adjustment methods, that is, adjustment
for all preceding QCs and that for only the subset identi-
fied through some regressor selection procedures (called the
“all-adjustment” method and “subset-adjustment” method
respectively). It is shown that the monitoring procedure
using the subset-adjustment procedure corresponds with
fewer false alarm sources, whereas the all-adjustment pro-
cedure potentially has a lower misdetection rate. Some con-
clusions are drawn based on the comparison, which can
be used to guide the application of regression-adjustment
monitoring procedures.

The reminder of the paper is organized as follows.
Section 2 introduces the conventional variability monitor-
ing procedure based on regression adjustment. Section 3
points out the impact of measurement errors in general and
compares such impacts when the all-adjustment procedure
and subset-adjustment procedure are used. In Section 4,

two numerical examples are used to demonstrate the anal-
ysis in Section 3. The paper concludes in Section 5.

2. Variability monitoring procedure based
on regression adjustment

2.1. Process model and assumptions

For j = 1, . . . , q, define Pj = {1, 2, . . . , p} as the set of QCs
in the preceding stages of QC j. For example, in Fig. 3, P5
is {1, 2, 3}, while Pq includes all the QCs except q. In our
study, we assume that QC j can be influenced by the QCs in
Pj. Also, let Uj and Ui, i ∈ Pj, be the local variation sources
of QC j and QC i respectively. The local variation sources
represent the quantities which are related to a specific QC
and are often not directly observable. They have different
physical meanings in different processes. For example, in
the simple machining process shown in Fig. 2, they denote
the local fixture errors. For the sake of simplicity, we assume
that every QC in the process has a different local variation
source in this paper. However, the conclusions we get here
are feasible for more general cases where the QCs at the
same stage could share the same local variation sources.
The linear model between Qj and Qi, i ∈ Pj, is

Qj =
∑
i∈Pj

βiQi + Uj = β′Q + Uj, (1)

whereβ = [β1, β2, . . . , βp]′ and Q = [Q1, Q2, . . . , Qp]′. Note
that if j = 1, Equation (1) becomes Q1 = U1. Q also satisfies
a linear model:

Q = DU, (2)

where U = [U1, U2, . . . ,Up]′ is the vector of all the preceding
local variation sources, D is a p × p matrix, and the super-
script “′” represents vector or matrix transpose. Here, D is
assumed to have a general form because one local variation
source could influence multiple QCs through propagation.
One point worth mentioning is that the purpose of assuming
D as a square matrix is only for the convenience of notation.
A rectangular D matrix will not change later results.

Because of measurement errors, the observed quantities
are (Y , X) which satisfy:

Y = Qj + e, (3)
X = Q + ε, (4)

where ε = [ε1, ε2, . . . , εp]′, X = [X1, X2, . . . ,Xp]′ and Xi =
Qi + εi, i = 1, . . . , p. e is the measurement error of QC j
and εi is that of QC i.

The following assumptions can be made based on the
characteristics of most manufacturing processes.

1. All local variation sources and measurement errors fol-
low a normal distribution. Due to the existence of var-
ious disturbances, the variation sources and measure-
ment errors are often a result of combined random
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disturbances. Thus, a normal distribution is often a rea-
sonable assumption due to the central limit theorem.
Furthermore, in this article, we focus on the detection of
variance change instead of mean shift. For the sake of
simplicity, we also assume that the local variation sources
and the measurement errors have zero means.

2. All local variation sources and measurement errors
are independent of one another. Because the variation
sources are in the process and measurement errors are
in the measurement systems that are physically indepen-
dent of the process, it is natural to assume that the varia-
tion sources are independent of the measurement errors.
Furthermore, the local variation sources are often the
result of different physical root causes and/or different
manufacturing stages, so it is also reasonable to assume
that they are independent of one another. Based on this
assumption, the variance-covariance matrix of U, �U,
and that of ε, �ε, are diagonal, i.e., �U = diag(σ 2

Ui
, i =

1, . . . , p) and �ε = diag(σ 2
εi
, i = 1, . . . , p), where σ 2

Ui
and

σ 2
εi

are the variances of Ui and εi respectively.
3. The process is stable, meaning that β, D, σ 2

e and σ 2
εi

,
i ∈ Pj are fixed.

It should be highlighted that the model described by
Equations (1)–(4) and assumptions 1–3 are consistent with
the analytical models developed for multistage manufac-
turing processes (e.g., Zhou et al. (2003)) and have been
adopted as the basis for several recently developed variabil-
ity monitoring and diagnosis methodologies (e.g., Apley
and Shi (2001) and Zhou et al. (2003)). In this article,
we focus on the following problem: knowing Y and X
and the model structures (the model parameters are un-
known), how do we develop an effective statistical moni-
toring scheme to detect the local variation change? Before
answering this question we briefly review the conventional
regression-adjusted variability monitoring procedure.

2.2. The regression-adjusted variability
monitoring procedure

The variability monitoring procedure based on regression
adjustment has two steps.

Phase I analysis: Assume that the historical data set in-
cludes m subgroup samples, each consisting of n (p + 1)-
dimensional multivariate observations. The data of the hth,
h = 1, 2, . . . , m, subgroup are denoted by (yh, χh), where
yh = [yh1, yh2, . . . , yhn]′ is an n-dimensional vector in which
yht , t = 1, 2, . . . , n, represents the tth observation of Y and
χh = [xh1, xh2, . . . , xhn]′ is an n × p matrix in which xht rep-
resents the tth observation of X. The following needs to be
done in sequence:

Step 1. Obtain the least squares estimate of the coefficient
β by

β̂ = (χ′χ)−1χ′y, (5)

where y and χ are the stacked vector and matrix,
respectively, of yh and χh, h = 1, 2, . . . , m, i.e., y =
[y′

1, y′
2, . . . , y′

m]′ and χ = [χ′
1, χ′

2, . . . , χ′
m]′.

Step 2. Calculate the residuals and their standard devia-
tions for each subgroup sample. For the hth sub-
group, the residuals and corresponding standard
deviation are

zh = yh − χhβ̂, (6)

Sh =
√√√√ 1

n − 1

n∑
t=1

(zht − z̄h)2,

where zh = [zh1, zh2, . . . , zhn]′ and z̄h = ∑n
t=1 zht/n.

Step 3. Calculate the control limits for the S chart of the
residuals:

UCL = B4S̄, CL = S̄, LCL = B3S̄,

where S̄ = (1/m)
∑m

h=1 Sh, and B3 and B4 are con-
stants which are tabulated for various sample sizes
to construct the three-sigma limits (e.g., Mont-
gomery (2001)).

Phase II analysis: When a new subgroup sample, (y0,χ0),
is obtained, the residuals using the estimate from Equation
(5) are calculated by

z0 = y0 − χ0β̂, (7)

and monitored by the S chart established in Phase I analysis.
If it is found that this sample is out of control, it means that
the local variation of QC j, i.e., σ 2

U0j
, is out of control.

The two-step analysis above will be conducted iteratively
for j = 1, 2, . ., q. In this way, we can find the root causes of
the variability change in the process.

It should be highlighted that the chart we used here is
different from that used by Zhang (1985), Hawkins (1991,
1993) and Zantek et al. (2006). They respectively used a
X̄ chart, a CUSUM chart and a T2 chart to monitor the
residuals because they were mainly interested in mean shifts,
whereas in our study we select the S chart for the purpose
of monitoring variability/variance changes. Later, we focus
on the impacts of measurement errors and regressor selec-
tion on the monitoring performance. Although the simple
S chart is used here, the conclusions should generally hold
for any variability monitoring chart.

3. Impacts of measurement errors and regressor selection

3.1. Impact of measurement errors

Under assumptions (1–3), when the sample size (say, mn
in the procedure) is large, the least squares estimate β̂ →
(ΣX)−1ΣXY , where ΣX denotes the (variance-) covariance
matrix of X, while ΣXY denotes that between X and Y
(Whittaker, 1990). According to Equations (1), (3) and (4),
ΣX = ΣQ + Σε and ΣXY = cov(Q,β′Q) = ΣQβ, where
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ΣQ is the covariance matrix of Q. Consequently,

β̂ → (ΣQ + Σε)−1ΣQβ, (8)

and thus

β − β̂ ≈ [Ip − (ΣQ + Σε)−1ΣQ]β = (ΣQ + Σε)−1Σεβ,

(9)

where Ip is the p-dimensional identity matrix. Equation (9)
shows that when measurement errors exist, i.e., Σε �= 0p×p,
β̂ is not consistent, where 0p×p denotes the p × p empty
matrix. Actually this is a well-known fact that has been
pointed out by Fuller (1987).

Let (Y0, X0) be the new measurement in Phase II analysis,
then the residual based on least squares estimate in Phase I
analysis is Z0 = Y0 − β̂

′
X0, which is essentially the predic-

tion error of the model built on the estimate. By substituting
into Equations (1)–(4), we can get:

Z0 = β′Q0 + U0j + e0 − β̂
′
(Q0 + ε0) = U0j + e0 − β̂

′
ε0

+ (β − β̂)′DU0. (10)

Since β̂ is determined in Phase I analysis, it is a constant
here. So the variance of Z0 is

var(Z0) = σ 2
U0j

+ σ 2
e + β̂

′
Σεβ̂ + (β − β̂)′D�U0 D′(β − β̂).

(11)

According to Equation (11), if there is no measurement
error or it is negligible, i.e., Σε ≈ 0p×p, by Equation (9),
β − β̂ ≈ 0p and consequently var(Z0) ≈ σ 2

U0j
+ σ 2

e , where

0p denotes the p-dimensional empty vector. Since σ 2
e is as-

sumed to be fixed (by assumption 3), var(Z0) is only deter-
mined by σ 2

U0j
and so if σ 2

U0j
changes it can be detected using

the monitoring procedure introduced in Section 2.2. In fact,
this is what makes regression adjustment an effective way
to monitor the local variations.

However, if the measurement error is not negligible, by
Equation (11), var(Z0) is related not only with σ 2

U0j
, but

also with ΣU0 , or more specifically, σ 2
U01

, σ 2
U02

, . . . , σ 2
U0p

.
Consequently, two detrimental effects would occur.

1. The False Alarm Rate (FAR) or the Type I error prob-
ability of the monitoring procedure will increase. Here,
FAR is defined as the probability that σ 2

U0j
is declared

to be out of control when in truth it is in control. This
point is easy to understand: since the change of var(Z0)
in Equation (11) may be not from σ 2

U0j
, but from some

σ 2
U0i

, i ∈ Pj, σ 2
U0j

may be declared to be out of control
when it actually experiences no change.

2. Likewise, the misdetection rate (MDR), or the Type II
error probability, which is defined as the probability that
σ 2

U0j
is declared to be in control when in truth it is out

of control, will also increase. In the presence of σ 2
U0i

,
the proportion between the change of σ 2

U0j
and var (Z0)

will decrease and thus the monitoring procedure will

have a larger Type II error probability as illustrated by
the operation characteristic curves of a typical S chart
(Montgomery, 2001).

In other words, the diagnostic capability of the monitor-
ing procedure will degrade in the presence of measurement
errors.

To provide more insight on the impact of measurement
errors, we will use a two-stage process as an example to
get a specific expression of Equation (11). Assume there is
one QC in each stage and the true model of the QCs are
Q1 = U1 and Q2 = βQ1 + U2, while the measurements are
X1 = Q1 + ε andY = Q2 + e. Also assume that σ 2

U1
= σ 2

U2
,

σ 2
ε = σ 2

e and the Phase I signal-to-noise ratio σ 2
U1

/σ 2
ε = κ.

Then by Equation (9), we can get:

β − β̂ = β/(κ + 1). (12)

From Equation (11) we obtain:

var(Z0) = σ 2
U02

+ σ 2
e + β̂2σ 2

ε + (β − β̂)2σ 2
U01

So the influence of σ 2
U01

is

(β − β̂)2σ 2
U01

= β2σ 2
U01

/(κ + 1)2. (13)

Clearly, the smaller the κ or the larger the β, the larger
the influence of σ 2

U01
on var(Z0). This means that the more

substantial the measurement errors (indicated by κ) and the
stronger the correlation between the QCs (indicated by β),
the more serious will be the detrimental effects.

3.2. Impact of regressor selection

In regression model building, the set of regressors can be
often reduced through a selection of relevant factors in
the model. Accordingly, there are two ways to conduct re-
gression adjustment, namely, the all-adjustment procedure
that regresses Y on all the preceding QCs and the subset-
adjustment procedure that regresses Y on only a selected
subset of the preceding QCs. In this section, these two ad-
justment methods are compared. Firstly, a graph represen-
tation of regressor selection results is introduced.

3.2.1. Graph representation of regressor selection results
For ease of comparison of the two regression adjustment
methods, a graph can be constructed as shown in Fig. 4, to
show the interactions among the QCs in a process. In this
graph, if there is a directed line from QC i to QC j, it means

Fig. 4. The graph representation of regressor selection results.
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that the coefficient of i is non-zero in the multiple regression
of j, i.e., β i �= 0 in Equation (1). This selection can be done
through physical analyses of the process or data-driven sta-
tistical selection procedures. For example, if we can identify
that i is physically independent of j, then there should not be
a line between i and j. For a simple process, physical analysis
might be a viable way to establish such a graph. However,
for a complex process involving many QCs, data-driven
methods have to be used. The data-driven techniques to
build such graphs include both the conventional model
selection techniques (Seber and Lee, 2003) and the recent
statistical testing methods based on graphical models
(Drton and Perlman, 2005; Zeng and Zhou, 2006). In this
article, however, we will not investigate the model building
technique; instead, we assume that a graphical model is
given.

Based on this graph, Pj can be divided into two subsets, Pj1
and Pj2, such that for every i ∈ Pj1, βi �= 0 there is a directed
line from i to j, and for every i ∈ Pj2, β i = 0 or there is no
line between i and j. For example, in Fig. 4, let j = 5, then
P51 = {1} and P52 = {2, 3}. Correspondingly, the regressors
and parameters in Equations (1)–(4) can be divided into two
parts, that is, Q = [Q′

I, Q′
II]

′, X = [X′
I, X′

II]′, ε = [ε′
I, ε

′
II]

′,
β = [β′

I,β
′
II]

′ and D = [D′
I, D′

II]′, where the quantities with
subscript “I” are related with QCs in Pj1 and those with
subscript “II” are related with QCs in Pj2. Then model (1)
becomes.

Qj =
∑
i∈Pj1

βiQi +
∑
i∈Pj2

βiQi + Uj = β′
IQI + β′

IIQII + Uj

(14)

where βI �= 0, βII = 0p and QI = DIU, QII = DIIU. Ac-
cordingly, the regressors are

XI = QI + εI, XII = QII + εII. (15)

In later discussion, subset adjustment means that Y is
regressed on XI, while all adjustment means that Y is re-
gressed on X. The two sets of regressors can be easily iden-
tified from Fig. 4. For example, for j = 5, the regressor is
X1 in subset adjustment and they include X1, X2 and X3 in
all adjustment.

3.2.2. Subset adjustment compared to all adjustment
The two adjustment methods can be compared in terms of
the FAR and MDR of the procedure resulted when they
are used respectively.

3.2.2.1. FAR comparison. If the subset-adjustment proce-
dure is used, by Equation (8), the least squares estimate:

β̂
s
I → (

ΣQI + ΣεI

)−1ΣQIβI (16)

where ΣQI denotes the covariance matrix of QI. Accord-
ingly, by Equation (11):

var
(
Zs

0

) = σ 2
U0j

+ σ 2
e + β̂

s′

I ΣεIβ̂
s
I

+ (βI − β̂
s
I)

′DIΣU0 D′
I(βI − β̂

s
I). (17)

Instead, if the all-adjustment procedure is used, the esti-
mate:

β̂
a =

[
β̂

a
I

β̂
a
II

]
→ (ΣQ + Σε)−1ΣQβ. (18)

Consequently,

var
(
Za

0

) = σ 2
U0j

+ σ 2
e + βa′

Σεβ̂
a

+ (β − β̂
a
)′D�U0 D′(β − β̂

a
) (19)

Let

(βI − β̂
s
I)

′DIΣU0 D′
I
(
βI − β̂

s
I

) =
∑
i∈Pj

f s
i σ 2

U0i
, (20)

(β − β̂
a
)′DΣU0 D′(β − β̂

a
) =

∑
i∈Pj

f a
i σ 2

U0i
. (21)

It can be proven that:

f s
i = (β′

IΣεI A
−1d1i)2 (22)

f a
i = [β′

IΣεI (A − CB−1C)−1(d1i − CB−1d2i)]2 (23)

where A = DIΣUD′
I + ΣεI , B = DIIΣUD′

II + ΣεII , C =
DIΣUD′

II, and d1i and d2i are the ith columns of DI and
DII respectively. Note that here ΣU is the covariance matrix
of U under normal conditions, which can be assumed to be
constant. The proof is given in Appendix 1.

According to Equations (20)–(23), the coefficients of σ 2
U0i

,
f s
i and f a

i , are all non-negative and can be viewed as the
measures of the influence of σ 2

U0i
on the monitored quantity

in subset-adjustment and all-adjustment methods, respec-
tively. The larger this measure, the larger the FAR resulting
from a certain change of σ 2

U0i
. In other words, if f s

i > f a
i ,

such an influence is larger in subset adjustment than in all
adjustment and thus the latter is a better choice in terms of
reducing the effect of σ 2

U0i
; and vice versa.

Considering the general assumptions in our study, it is
difficult to further simplify Equations (22) and (23). How-
ever, the following facts can be drawn about the comparison
between f s

i and f a
i :

Fact 1: If QI and QII are independent, then f s
i = f a

i for
all i ∈ Pj.

This is a direct result. If QI and QII are independent,
C = DIΣUD′

II = ΣQIQII = 0p1×p2 , where p1 and p2 are the
numbers of QCs in Pj1 and Pj2 respectively, ΣQIQII is the
covariance matrix between QI and QII. Thus, by Equations
(22) and (23), f s

i = f a
i = (β ′

IΣεI A
−1d1i)2, meaning that the

influence of σ 2
U0i

is the same in both methods.
Fact 2: For those i ∈ Pj such that d1i = 0p1 , f s

i = 0 and
f a
i ≥ 0.

This is also direct from Equations (22) and (23). It means
that for the preceding local variations satisfying this condi-
tion, their changes will not influence the monitored quantity
at all if subset adjustment is used, but may have influence if
all adjustment is used.

Fact 3: In general, the magnitudes of f s
i and f a

i depend on
D and the values of the local variations and measurement
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Fig. 5. A three-stage process.

errors. For some i, f s
i > f a

i , and for others, f s
i ≤ f a

i . In other
words, there is no uniform conclusion in general cases.

Fact 3 tells us that the subset-adjustment method and
the all-adjustment method are not uniformly better than
the other. This point can be shown specifically by the three-
stage example represented by Fig. 5.

In this example, assume the true model is Q1 = U1,
Q2 = b1Q1 + U2 and Q3 = β2Q2 + U3, where b1, β2 �= 0.
The measurements are X1 = Q1 + ε1, X2 = Q2 + ε2 and
Y = Q3 + e. So the matrix D can be written as

D =
[

b1 1
1 0

]
.

Following Equations (20)–(23), we can get:

f s
1 =

(
β2b1σ

2
ε2

b2
1σ

2
U1

+ σ 2
U2

+ σ 2
ε2

)2

,

f a
1 =

(
β2b1σ

2
ε1
σ 2

ε2

σ 2
U1

σ 2
U2

+ σ 2
ε2
σ 2

U1
+ b2

1σ
2
ε1
σ 2

U1
+ σ 2

ε1
σ 2

U2
+ σ 2

ε1
σ 2

ε2

)2

,

f s
2 =

(
β2σ

2
ε2

b2
1σ

2
U1

+ σ 2
U2

+ σ 2
ε2

)2

,

f a
2 =

(
β2σ

2
ε2

(
σ 2

U1
+ σ 2

ε1

)
σ 2

U1
σ 2

U2
+ σ 2

ε2
σ 2

U1
+ b2

1σ
2
ε1
σ 2

U1
+ σ 2

ε1
σ 2

U2
+ σ 2

ε1
σ 2

ε2

)2

. (24)

Considering a special case whereσ 2
U1

= σ 2
U2

,σ 2
ε1

= σ 2
ε2

and
σ 2

U1
/σ 2

ε1
= κ, it can be shown that.

f s
1 > f a

1 , f s
2 < f a

2 . (25)

The proof is given in Appendix 2. Equation (25) shows that
the influence of σ 2

U01
using subset adjustment is larger than

that using all adjustment, while the case for the influence of
σ 2

U02
is the reverse.

From the three facts, we can see that when the QCs in
Pj1and Pj2 are independent, there is no difference between
the two adjustments since the monitoring procedures using
them will suffer the same influences from the preceding local
variations. When the QCs in the two sets are correlated,
depending on the correlation structure between them and
the specific local variation, the performances of the subset-
adjustment and all-adjustment methods are different. For
the local variations which satisfy the condition in fact 2,
subset adjustment can completely eliminate their influences
on the monitoring procedure, but all adjustment may not
do so.

3.2.2.2. MDR comparison. In this part, we consider those
cases where all preceding local variations are kept in normal
status, i.e., σ 2

U0i
= σ 2

Ui
for i ∈ Pj, and only the local variation

Table 1. Phase I analysis results under different values of κ (β =
2)

κ β̂ UCL CL LCL

20 1.8993 1.5985 1.1140 0.6294
10 1.8440 1.7290 1.2049 0.6808
7 1.7443 1.8175 1.2666 0.7156
5 1.6891 1.9224 1.3396 0.7569

of QC j increases. MDR is the probability that the change
in σ 2

U0j
is missed by the monitoring scheme.

Consider Phase I analysis of the monitoring procedure
in Section 2.2. According to the linear least square theory,
the variance of Y can be decomposed into that of Ŷ , the
predictor, and that of Y − Ŷ , the residual (Whittaker, 1990,
Proposition 5.3.4). Consequently, we have that:

var(Zs) = var(Y ) − var(ŶI(XI)), (26)

var(Za) = var(Y ) − var(ŶII(XI, XII)), (27)

where var(Zs) and var(Za) are the variances of the resid-
ual produced by the subset-adjustment method and by
all-adjustment method respectively, while var(ŶI(XI)) and
var(ŶII(XI, XII)) are the variances of the corresponding pre-
dictors. Here, the parentheses are used to emphasize the
regressors in these two adjustments. The variance of the
predictor is also referred to as the explained variation. It
can be proved that (please refer to Appendix 3)

1. If QI and QII are independent, then var (Zs) = var(Za).
(28)

2. Generally, var (Zs) > var (Za). (29)

We now perform the Phase II analysis. Assume the local
variation of QC j increases by δj, i.e., σ 2

U0j
− σ 2

Uj
= δj. Ac-

cording to Equations (17) and (19), var(Zs
0) = var(Zs)+δj

and var(Za
0) = var(Za)+δj. Thus, the ratios between the

variation change, δj, and the background variations are

r s = δj

var(Zs)
, ra = δj

var(Za)
.

From the properties of an S chart, it is easy to see that if this
ratio is larger, then the MDR (or Type II error) of the chart
will be smaller. Thus, according to Equations (28) and (29),
two facts can be obtained:

Table 2. Phase I analysis results under different values of β (κ =
10)

β β̂ UCL CL LCL

1 0.8991 1.5663 1.0915 0.6167
2 1.8440 1.7290 1.2049 0.6808
3 2.7174 1.9430 1.3540 0.7650
6 5.4660 3.0158 2.1016 1.1874
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Fig. 6. (a) FAR for different values of κ; and (b) MDR for different values of κ.

Fact 4: If QI and QII are independent, r s = ra, implying that
the subset-adjustment method is as sensitive to the change
of j’s local variation as the all-adjustment method. Thus,
these two methods will have the same MDR.
Fact 5: Generally, r s < ra, meaning that the subset-
adjustment method is less sensitive to the change of j’s local
variation than the all-adjustment method and thus it will
yield a higher MDR.

3.2.3. Summary of the impact of regressor selection
Using the five facts obtained from the comparison, some
conclusions that are helpful in the use of a regression-
adjusted monitoring procedure can be summarized as
follows.

Fig. 7. (a) FAR for different values of β; and (b) MDR for different values of β.

1. By fact 1 and fact 4, all the QCs in Pj2 that are indepen-
dent of the QCs in Pj1 can be removed from the regressors
to simplify the monitoring procedure because these QCs
have no influence on the FAR and MDR.

2. As far as the FAR is concerned, by fact 3, there is no
clear advantage to using either the subset-adjustment
method or the all-adjustment method. Generally they
depend on the correlation structure of the QCs in the
process and specific local variations. However, we can
safely conclude that procedures using the all-adjustment
method will suffer the influences from all preceding local
variations, whereas those using the subset-adjustment
method can eliminate the influences from some local
variations satisfying the condition in fact 2. In other
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Fig. 8. A four-stage process.

words, the subset-adjustment method corresponds with
fewer false alarm sources.

3. In terms of reducing the MDR, by fact 4 and fact 5,
the all-adjustment method is a better choice or at least
performs as well as the subset-adjustment method.

As such, there is generally no uniform priority between
these two adjustment methods. In practice, which one to
choose depends on the specific situation and people’s pref-
erence on FAR and MDR. If a low FAR is important, then
the subset-adjustment method should be seriously consid-

Fig. 9. FAR for the two considered adjustments: (a) FAR plotted against σ 2
U01

/σ 2
U1

; (b) FAR against σ 2
U02

/σ 2
U2

; (c) FAR against σ 2
U03

/σ 2
U3

;
and (d) FAR against σ 2

U04
/σ 2

U4
.

ered, whereas if MDR is critical, the all-adjustment method
should be used.

4. Numerical study

4.1. A two-stage process to illustrate the impact
of measurement errors

In this example, we apply the monitoring procedure in
Section 2.2 on the two-stage process as described in
Section 3.1. In Phase I analysis, assume σ 2

U1
= σ 2

U2
= 1, m =

200 and n = 25. Three-sigma limits are used to construct
the S chart. In phase II analysis (the sample size is again
25), we consider two scenarios: in scenario 1, β is fixed at
2, while κ can be 5, 7, 10 or 20, and in scenario 2, κ is fixed
at 10, while β can be 1, 2, 3 or 6. The FAR and MDR val-
ues of the procedure in these two scenarios are calculated by
changing the two ratios, σ 2

U01
/σ 2

U1
and σ 2

U02
/σ 2

U2
, respectively.
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Table 3. Phase I analysis results for the two adjustment methods

Method β̂1 β̂2 β̂3 β̂4 UCL CL LCL

Subset adjustment — 4.7500 — — 2.6374 1.8379 1.0384
All adjustment 0.3144 3.3971 −0.0193 0.6426 2.3479 1.6362 0.9244

Tables 1 and 2 list the Phase I analysis results includ-
ing β̂ and estimated control limits in scenarios 1 and 2 re-
spectively. It is clearly seen that, as indicated by Equation
(12), the difference between β and β̂ becomes larger when
κ is smaller or β is larger. FAR against σ 2

U01
/σ 2

U1
and MDR

against σ 2
U02

/σ 2
U2

in scenario 1 are shown in Fig. 6, and those
in scenario 2 are in Fig. 7, where every result is obtained
through 20 000 Monte Carlo simulations. According to Fig.
6, we know that, as indicated by Equation (13):

1. A larger σ 2
U01

or smaller κ corresponds with a larger FAR.
We can also note that the value of κ is a very important
factor in that FAR is almost unchanged and also very
small when κ is large (e.g., >20).

2. A smaller σ 2
U02

or smaller κ corresponds with a
larger MDR. Moreover, as σ 2

U02
becomes very large,

MDRquickly reduces to around zero. This suggests that
MDR is influenced by measurement errors especially
when the change of σ 2

U02
, which is supposed to be de-

tected by the monitoring procedure, is small. Also, the
impact of measurement errors becomes larger when β

increases, as shown in Fig. 7.

4.2. A four-stage process to illustrate the impact
of regressor selection

In this example, consider the monitoring of QC 5. Assume
we have obtained the graph representing the interactions
in the process, which is exactly as shown in Fig. 8, us-
ing a regressor selection technique. Accordingly, assume

Fig. 10. MDR for the two adjustment methods.

the true relationships are Q1 = U1, Q2 = b12Q1 + U2, Q3 =
U3, Q4 = b24Q2 + U4 and Q5 = β2Q2 + U5, while the mea-
surements are X1 = Q1 + ε1, X2 = Q2 + ε2, X3 = Q3 + ε3,
X4 = Q4 + ε4 and Y = Q5 + e. In the simulation, let b12 =
1, b24 = 2, β2 = 5, κ = 10. In Phase I analysis, σ 2

U1
=

σ 2
U2

= σ 2
U3

= σ 2
U4

= σ 2
U5

= 1, m = 200 and n = 25. The sam-
ple size in Phase II is also 25. Table 3 lists the Phase I
analysis results when subset adjustment, Y ∼ X2, and all
adjustment,Y ∼ X1 + X2 + X3 + X4, are used. The FAR
against σ 2

U01
/σ 2

U1
, σ 2

U02
/σ 2

U2
, σ 2

U03
/σ 2

U3
and σ 2

U04
/σ 2

U4
are shown

in Fig. 9(a), 9(b), 9(c) and 9(d) respectively, where the two
lines in each figure denote the results obtained in these two
adjustments.

It’s easy to find that QC 3 is independent of QC 2. Thus,
by fact 1, the influences of σ 2

U03
in subset adjustment and

all adjustment are the same, as validated by Fig. 9(c). Also,
we can find that d14 = 0, and consequently, by fact 2, the
change of σ 2

U04
will not cause a false alarm when the subset-

adjustment method is used. This is shown by Fig. 9(d),
where the FDR resulting from the change of σ 2

U04
is very

high (>0.5) in all adjustment, but around zero in subset
adjustment. So subset adjustment is, as expected, a quite
advantageous choice to eliminate the possible serious FAR
caused by σ 2

U04
. Figure 9(a) indicates that the influence of

σ 2
U01

using all adjustment is smaller than that using subset
adjustment, whereas Fig. 9(b) gives the contrary conclu-
sion. This is as suggested by Equation (25).

Figure 10 shows the MDR against σ 2
U05

/σ 2
U5

for the two
adjustment methods when the FAR is maintained at around
0.0027. As expected, the all-adjustment method has a lower
MDR and as the change in σ 2

U05
becomes large, the MDR

for both methods quickly reduces to zero.

5. Summary and discussion

This paper investigates the impacts of measurement errors
and regressor selection on the regression-adjustment-based
monitoring scheme of variability in multistage processes. It
is shown that the existence of measurement errors will re-
sult in higher FAR and MDR levels, and the complexity
of the impact of regressor selection is actually a byprod-
uct of the measurement error impact. We also compare
the performances of the subset-adjustment method and all-
adjustment method and find that the monitoring procedure
using the subset-adjustment method is more robust to the
change of some preceding local variations than that us-
ing the all-adjustment method, however the all-adjustment



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

ity
 o

f W
is

co
ns

in
 M

ad
is

on
] A

t: 
20

:4
2 

17
 D

ec
em

be
r 2

00
7 

Variability monitoring using regression adjustment 119

method has a lower MDR. Thus, the choice of which of
these methods to use is dependent on the characteristics of
the process and preference about the FAR and MDR of the
monitoring procedure.

In the analysis, asymptotical performances under large
sample conditions are considered. However, similar results
can be verified through further numerical studies when sam-
ple sizes are much smaller. Thus, the results of this study
can be viewed as a general reflection of multistage manufac-
turing processes where a large number of samples are often
readily available due to advances in sensing and information
technologies. Consequently, the conclusions summarized in
this paper possess wide applicability in practice. Another
point worth mentioning is that the detrimental influences
of measurement errors in regression-adjusted methods can
be optimally reduced if we replace the ordinary least squares
regression with a modeling technique which is known as To-
tal Least Squares (TLS) in computational mathematics and
engineering, or as Errors-In-Variables (EIV) modeling in
statistics (Van Huffel and Lemmerling, 2002). By TLS/EIV,
a consistent estimate β̂ can be obtained and thus the influ-
ence of measurement errors is minimized. However, these
techniques are computational intense and are not easy to
apply in practice. Moreover, one of the four conditions (i)
σ 2

e /σ 2
εi

is known; (ii) σ 2
e is known; (iii) σ 2

εi
is known; (iv)

both of σ 2
e and σ 2

εi
are known, is required to get the so-

lution (Van Huffel, 2004), which sets another obstacle for
TLS/EIV techniques to be applied widely. Thus, in many
practical cases, least squares regression is still an efficient
choice.
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Appendices

Appendix 1. Proof of Equations (22) and (23)

According to Equation (9):

βI − β̂
s
I = (

ΣQI + ΣεI

)−1ΣεIβI, (A1)

β − β̂
a = (ΣQ + Σε)−1Σεβ. (A2)

Let A, B and C be as defined in Equations (22) and (23),
then.

ΣQ + Σε =
[
ΣQI + ΣεI ΣQIQII

Σ′
QIQII ΣQII + ΣεII

]

=
[

DIΣUD′
I + ΣεI DIΣUD′

II

DIIΣUD′
I DIIΣUD′

II + ΣεII

]

=
[

A C
C′ B

]
(A3)

By partitioned matrix property (Seber and Lee, 2003),

(ΣQ + Σε)−1 =
[

(A − CB−1C′)−1 E
E′ F

]
(A4)

where E = −(A − CB−1C′)−1CB−1 and F = B−1 + B−1C′
(A − CB−1C′)−1CB−1.

Substituting Equation (A4) into Equation (A2) yields:

β − β̂
a =

[
βI − β̂

a
I

0 − β̂
a
II

]
=

[
(A − CB−1C′)−1ΣεIβI

E′ΣεIβI

]

=
[

(A − CB−1C′)−1ΣεIβI

−B−1C′(A − CB−1C′)−1ΣεIβI

]
(A5)

From Equations (20) and (21):

f s
i = [(

βI − β̂
s
I

)′d1i
]2

(A6)

f a
i = [(β − β̂

a
)′di]2 (A7)

where di = [
d1i
d2i

] denotes the ith column of D. Substituting

(A1) into (A6) and (A5) into (A7) yields Equation (22) and
Equation (23) respectively. �

Appendix 2. Proof of Equation (25)

Let σ 2
U1

= σ 2
U2

= κσ 2
ε1

= κσ 2
ε2

, κ > 0, substituting them into
Equation (24) yields:

f s
1 = β2

2 b2
1

(
1

b2
1κ + κ + 1

)2

f a
1 = β2

2 b2
1

(
1

κ2 + κ + b2
1κ + κ + 1

)2

(A8)

f s
2 = β2

2

(
1

b2
1κ + κ + 1

)2

f a
2 = β2

2

{
1

[b2
1κ/(κ + 1)] + κ + 1

}2

(A9)

Equation (25) is easy to obtain by comparing the two de-
nominators in Equations (A8) and (A9). �

Appendix 3. Proof of Equations (28) and (29)

By the additivity of the explained variation (Whittaker,
1990, Proposition 5.6.1):

var(ŶII(XI, XII)) = var(ŶI(XI)) + var(Ŷ (XII − X̂II(XI)))
(A10)

where X̂II(XI) denotes the least square predictor of XII from
XI. Essentially, Equation (A10) indicates that the amount
of variation explained by XI and XII is the sum of that
explained by only XI and that explained by XII adjusted
for XI. Furthermore, the part var(Ŷ (XII − X̂II(XI))) can be
simplified to

cov(Y, XII|XI)var(XII|XI)−1cov(XII, Y |XI), (A11)

where cov(Y, XII|XI) is the partial covariance of Y and XII
given XI, while var(XII|XI) is the partial variance of XII
given XI.

By Proposition 5.5.1 in Whittaker (1990):

cov(Qj, QII|QI) = cov(Qj, QII)

− cov(Qj, QI)var(QI)−1cov(QI, QII), (A12)
cov(Y, XII|XI) = cov(Y, XII)

− cov(Y, XI)var(XI)−1cov(XI, XII). (A13)

Substituting Equations (3) and (15) into Equation (A13)
yields:

cov(Y, XII|XI) = cov(Qj + e, QII + εII) − cov

(Qj + e, QI + εI)var(QI + εI)−1cov(QI + εI, QII + εII).
(A14)

According to assumption (2), Equation (A14) can be sim-
plified as

cov(Y, XII|XI) = cov(Qj, QII) − cov(Qj, QI)[var(QI)

+var(εI)]−1cov(QI, QII) (A15)

Another important fact is that according to Proposi-
tion 10.5.1 in Whittaker (1990), βII = 0 in Equation (14)
is equivalent to cov(Qj, QII|QI) = 0.

Thus, comparing Equations (A11), (A12) and (A15), we
can get:

1. If QI and QII are independent, i.e., cov(QI, QII) =
0, cov(Y, XII|XI) = cov(Qj, QII|QI) = 0, and conse-
quently:

var(Ŷ (XII − X̂II(XI))) = 0. (A16)
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2. Generally, since var(εI) �= 0, cov(Y, XII|XI) �= cov(Qj,
QII|QI) and thus cov(Y, XII|XI) �= 0. Consequently:

var(Ŷ (XII − X̂II(XI))) > 0. (A17)

By Equations (26), (27) and (A10), Equations (28) and
(29) hold. �
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