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The new trends in manufacturing toward modularity and flexibility result in a larger number of inter-
dependent operations in a process, leading to complex multistage manufacturing processes. Identifying
the variation flow and implementing quality control in such processes is very chailenging because of the
complex interactions among different stages. This article presents a systematic model building method-
ology to identify the underlying interactions among stages through the integration of advanced statistical
techniques in graphical models and engineering insights to manufacturing processes. A statistical test-
ing procedure is developed to efficiently construct the chain graph of the key product characteristics in a
process, making use of identified relationships at previous stages. A case study validating the effectiveness

of the proposed procedure is also presented.
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1. INTRODUCTION

Various new manufacturing paradigms, including modular
production systems, cellular manufacturing, and reconfigure
manufacturing, have been developed and adopted in recent
years. In general, these new paradigms are aimed toward in-
creasing modularity, flexibility, and self-sufficiency at produc-
tion floor levels (Ashley 1997). Thus an emerging scenario that
is becoming increasingly popular in manufacturing is that the
complex operations in the process are divided and grouped into
multiple stages, which are interconnected and easily reorga-
nized to provide the production capability for a product family.
Figure 1 illustrates a typical car body assembly process as an
example of a multistage manufacturing process.

The final product of the car body assembly process is the
structural frame of a car, as shown in Figure 1(a). Figure 1(b)
shows a simplified diagram of the process, in which a set of
subassemblies, including dash, underbody, left and right body
sides, and so on, are welded together to form the physical frame,
after which closure panels, including roof, doors, hood, and
fenders, are mounted on the frame. Due to the product’s com-
plexity, there are close to 100 stages in a typical car body assem-
bly process. To monitor the product quality, many key product
characteristics (KPCs) on the car body, represented by the de-
viations of dimensional characteristics from their nominal val-
ues as shown in Figure 1(a), are often measured in the process.
Again, due to the product’s complexity, several hundred KPCs
are often measured in a typical auto body assembly process.

Complex multistage manufacturing processes like car body
assembly raise significant challenges in process quality control
and variation reduction. The main challenge lies in the com-
plex interactions among the KPCs at different stations/stages.
At each assembly stage, certain features of the subassembly
formed at preceding stages are often used as references to lo-
cate the subassemblies at the current stage. Thus the posi-
tional/dimensional errors generated at previous stages will in-
fluence the quality of the present stage. One can imagine that in

a complex manufacturing process, process variation will prop-
agate along the physical process topology and form a network
of variation flow. To determine on which stage and what factor
on that stage causes the excessive variation in certain KPCs re-
quires identification of the interactions among KPCs at different
stages.

Some research efforts have been directed at identifying the
interactions among stages of a manufacturing process. These
methods can be roughly classified as data-driven techniques,
which are based on the statistical analysis of historical process
data, and analytical methods, which are based on offline phys-
ical model of the process. Existing data-driven techniques in-
clude the cause-selecting control charts for a two-step process
(Zhang 1985; Wade and Woodall 1993), variation analysis us-
ing linear regression and analysis of variance (ANOVA) tools
(Lawless, Mackay, and Robinson 1999; Agrawal, Lawless, and
Mackay 1999; Fong and Lawless 1998), and the procedure
for measuring the influence of each stage’s performance on
the output quality of subsequent stages (Zantek, Wright, and
Plante 2002). The analytical method is represented by recently
developed ‘stream of variation (SoV)’ methodologies that fo-
cus on dimensional variation analysis of machining processes
(e.g., Huang, Zhou, and Shi 2000; Djurdjanovic and Ni 2001,
Zhou, Huang, and Shi 2003b) and assembly processes (e.g.,
Mantripragada and Whitney 1999; Ding, Ceglarek, and Shi
2000; Jin and Shi 1999). These aforementioned techniques ei-
ther deal with simple systems with a limited number of stages
or require a thorough physical understanding of the process,
which might not be generally available. There is a lack of gen-
eral methodologies for identifying the interactions among the
stages of a large-scale, complex process.
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Figure 1. The car body assembly process. (a) The car body. (b) Process tree.

This article proposes a general methodology inferring the un-
derlying interactions among KPCs. In this article a chain graph-
ical model is used to describe the direct influences among KPCs
at different stages. The ith KPC directly influences the jth KPC
if it uniquely contributes to the variation of the jth KPC. To
tackle the issue of high dimensionality, a chain graph (CG)
building technique is developed by taking the known process
physical layout into consideration and using the relationships
identified at previous stages. The proposed methodology is an
efficient way to conquer the interstage complexity in manufac-
turing processes.

The article is organized as follows. Section 2 presents the
problem formulation and a review of current methods for con-
structing chain graphs. Section 3 presents the proposed CG
building technique, introducing a theorem on conditioning set
simplification that provides the theoretical basis for the pro-
posed technique. Section 4 illustrates the application of the
technique through a case study on the car body assembly
process presented in Section 1, and Section 5 concludes.

2. PROBLEM FORMULATION AND REVIEW OF
GRAPHICAL MODELS

2.1 Problem Formulation

If we define KPCs as nodes, then a general multistage manu-
facturing process can be described by the layout shown in Fig-
ure 2, with g KPCs distributed at n stages. Because our focus is
on identifying variation propagation in the process, the means
of these KPC variables are assumed to be 0. We use variable X;
to represent the jth KPC in the process and further define P; as
the set of all KPCs in preceding stages of j. For example, Ps
is {1, 2, 3}, whereas P, includes all of the KPCs except the gth
KPC in Figure 2. The physical characteristics of manufacturing
processes make it reasonable to assume the following:

(A1) The KPCs at the same stage do not influence each
other, and we are concerned only with the identifying
the interstage relationships in this article. This assump-
tion is reasonable because KPCs at the same stage are
often generated and/or determined simultaneously, and
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thus they cannot influence each other. In some special
cases where some KPCs at the same physical stage are
generated sequentially, we can split the physical stage
into multiple “artificial” stages and the assumption will
still hold.

(A2) The variation of X; consists of associated local varia-
tion, which often is not directly measurable, and the
propagated variation contributed by some preceding
KPCs to .

(A3) LetX = (X, ..., X;)’ € R? be arandom vector includ-
ing all of the ¢ KPCs in the process; then X follows a
multivariate normal distribution N4(0, ) with nonsin-
gular covariance matrix X.

For such a process, the key issue is to identify which preced-
ing KPCs contribute variation to or interact with X; based on
known samples of X; and X;, i € P;.

To tackle this problem, we define direct influence as follows:
If X;, i € Pj, uniquely contributes to the variation of Xj, then
we claim that X; directly influences X;. Let Xp, = {Xx, k € P;)
be the vector including all of the KPCs in P;. To interpret the
definition of direct influence mathematically, we split the vector
ij into {X;} and the rest, denoted as ij\{Xi}. The linear least
squares theory shows that (Whittaker 1990)

var(%;(Xp,)) = var(X;(Xp,\ (X))
+Var()A('j(Xi—Xi(XP,~\{Xi}))), ey
where X;(Xp,) = cov(X;, Xp,) var(Xp,)~'Xp, is the linear

least squares predictor of X; from the elements of the set X,
and “var” designates variation. Equation (1) indicates that the
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Figure 2. The layout of a general multistage process.
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amount of variation in X; explained by all elements of P; can
be decomposed into the variation explained by Xp,\{X;}, the

elements in P; other than X;, and X; — )A(','(ij\{Xi}), X; ad-
justed for Xp,\(X;}. So actually, var(X;(X; — X;(Xp,\{X:})))
represents the unique contribution of X; to the variation of X;.
Furthermore, var()?,(Xi - X,- (ij\{X,-}))) can be simplified to

cov(X;, Xi[Xp,\(X:}) var(X:[Xp\ (X;})
x cov(X;, X;|Xp\(Xi}), (2)

where cov(X;, x,-|xpj\{x,-}) is also referred to as the partial co-
variance between X; and X; given ij\{X,-} (Whittaker 1990).
Clearly, if cov(X;, XjIij\{X;}) is nonzero, then (2) also is
nonzero, meaning that X; has a unique contribution to the
variation of X;. But because X is normally distributed [(A3)],
cov(X;, XjIij\{X;}) or corr(X;, X,-lX»pj.\{X,-}) (called partial
correlation) is 0 iff X; and X; are independent given all of the
remaining variables in P;, written as i 1L j|P;\{i} (Whittaker
1990). In other words, if X; has no direct influence on X;, then
it also is conditionally independent with X;, and vice versa.

In statistical science, graphical models, also called condi-
tional independence graphs, are often used to describe the con-
ditional independent relationships among a set of random vari-
ables (e.g., Whittaker 1990; Cox and Wermuth 1993, 1996;
Lauritzen 1996; Jordan 1998). Based on the foregoing analy-
sis, it is clear that identifying the direct influential relationships
of KPCs in a process is equivalent to constructing a CG, which
is a special kind of graphical model. The next section provides
a brief review of the theories and notations of graphical models
for the sake of completeness. Readers familiar with graphical
models can jump to Section 2.3 directly.

2.2 Brief Review of Graphical Models

An independence graph is a pair G = (V, E) in which V, a
set of nodes, denotes a set of random variables X (with the jth
random variable represented as X;) and E is a set of edges be-
tween these nodes. There is no edge between two nodes i and
J»i,j € V,iff X; and X; are conditionally independent given oth-
ers, written as i LL j|V\(i,j}. The edge between i and j can be
either directed from one to the other or undirected. In particular,
a CG is a class of graphs in which the node set V is partitioned
into numbered subsets, called blocks, such that all edges be-
tween nodes in the same subset are undirected and all edges be-
tween different subsets are directed, pointing from the set with
the lower number to the one with the higher number. If we treat
the stages as blocks and a directed edge as a direct influence,
then a CG exactly contains the relationships of interest. Also
note that the graph built in this article is a special kind of CG
that, according to (A1), contains no edge within blocks (stages).
Thus it also can be viewed as a special directed graph, a class
of graphs in which all edges are directed.

We next introduce the following notations related to directed
graphs. In a directed graph, if there is an edge from node i to j,
then we say that i is a parent of j and j is a child of i. A path
of length »n from i to j is a sequence, ip =i, ij,..., i, =j, Of
distinct nodes such that ix_; — iy forall k=1,...,n. A cycle
of length n is a path in which the first and last nodes are identical
(i.e., ip = iy). A trail of length n from i to j is a sequence, iy = i,
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Figure 3. Available relationships identified at S| ~ S,,_;.
i1, ...,ip =J, of distinct nodes such that ix_; — iy or iy — ix_1

forall k=1, ..., n. Thus moving along a trail could go against
the direction of the arrows, in contrast to the case of a path.

A directed graph that contains no cycles is called a directed
acyclic graph (DAG), designated D. The graph that we want to
build is actually a DAG according to the physical characteristics
of a manufacturing process. In a DAG, if there is a path from i
to j, then i is called an ancestor of j and j is called a descendant
of i.

The global Markov property and d-separation criterion are
very important properties of DAGs (Lauritzen 1996). Letting
A, B, and Q be disjoint subsets of nodes in a DAG, according
to this criterion, A 1L B|Q iff Q d-separates A and B, and Q
d-separates A and B if there is no active trail from A to B given
Q or if all trails from A to B are blocked by Q. (Here a trail from
A to B means a trail from any node in A to a node in B.) A trail
is active given Q if (a) for every node y on this trail at which
arrows of the trail do not meet head-on, y ¢ Q, and (b) for every
node y at which arrows of the trail meet head-on, either y or
any descendant of y is in Q. A trail that is not active given Q is
also said to be blocked by Q. For example, considering the trail
from node 1 to node 3 in Figure 3 and conditioning set Q = {5},
arrows of this trail meet head-on at 5, the only (intermediate)
node on the trail, and Se @, meaning that both (a) and (b) are
satisfied. Consequently, we claim that this trail is active, and
thus 1 and 3 are not independent given 5.

2.3 Challenges in Chain Graph Construction for
Manufacturing Processes

The commonly used technique for CG construction is a step-
wise model selection procedure that identifies the dependence
of X;, j=1,...,q, on its preceding KPCs sequentially (e.g.,
Edwards 2000). Specifically, in the jth step, the conditional in-
dependent relationship between X; and each X;, i € P}, is tested,
and if the result shows that X; and X; are not conditionally in-
dependent, then a directed edge is drawn from i to j; otherwise,
no edge exists between them. In this way, the CG is built gradu-
ally from the leftmost stage to the last stage. It is also worth
mentioning that the test for conditional independence in the
procedure can be based on maximum likelihood estimates in
submodels (e.g., Neapolitan 2004), as well as on sample partial
correlations.

Another method was recently proposed in which all of the
relationships in the process are tested simuitaneously (Drton
and Perlman 2005; Andersson, Madigan, and Peerlman 2001).
According to this method, constructing CGs of the process is
equivalent to conducting simultaneous hypothesis tests

Hij: pijpp\ i =0 versus &)
Kij:px‘jl‘F}\{il #0, 1 <i<j<qand k() <k(p),
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where k(i) and k(j) are the indices of the stages that contain
KPC i and j. [Here PijP\i) is short for corr(X;, X;|Xp,\{Xi}).]
Similarly, if H;; is rejected, then a directed edge is drawn from
itoj.

The foregoing methods do not fully use the identified rela-
tionships at previous stages. In both methods, all of the ele-
ments in P;\{i}, regardless of their relationships that have been
identified through previous tests, are included in the test of the
conditional independence between i and j. Thus possible re-
dundancy may result in the conditioning set, because not every
element in P;\{i} contains information explaining the depen-
dence between X; and X;. This redundancy may lead to a large
number of variables involved in the testing and consequently
not only add more difficulty to the procedure, but also degrade
the power of the tests (Drton and Perlman 2005). This point be-
comes especially clear when complex manufacturing processes
comprising numerous variables are considered.

To solve this problem, we develop a methodology that can
reduce the redundancy in the conditioning set through fully
exploiting relationships that have been identified at previous
stages. Basically, we follow the similar sequential method as
in the stepwise procedure to examine the relationships; that is,
starting from the leftmost stage, the relationships between X,
i €81~ Sk-1,and Xj, j € S, for k =2, ..., n, are identified in
sequence. But unlike in the stepwise procedure, at each step, be-
cause relationships among the variables at §; ~ S;—; and those
between X;, t < i, and X; are already known, they are used to
reduce the complexity in the subsequent testing. For example,
in the situation illustrated in Figure 3, with the relationships of
the variables at S; ~ S,— that are already known, we do not
need to condition on any variable when testing the relationship
between X> and X,,. Similarly, when testing the relationship be-
tween X; and X, we need only condition on X3 and X5 instead
of all of the remaining g — 2 variables. The simplified condi-
tioning set has a much smaller dimension but contains all of the
variables needed to explain the dependence between X; and X;.

It should be pointed out that some previous attempts have
been made to reduce the dimension of the conditioning set. The
reduction is considered in the stepwise procedure, making use
of the identified relationships between X;, t < i, and X; in testing
the conditional independence between X; and X; (e.g., Edwards
2000). Clearly, the identified relationships among the variables
at St ~ Sk~ are not used, accounting for the major part of the
available relationships. In contrast, the methodology proposed
in this article can use all of the available relationships identified
in previous tests. The rationale for the reduction is thoroughly
studied, and a systematic procedure for conditioning set sim-
plification is developed. Some authors (e.g., Drton and Perlman
2005) also have considered conditioning set simplification in a
simultaneous procedure by incorporating previous knowledge
about the presence or absence of edges. In this method, a sub-
set P'(i,j) € 'Pj\{l} that satisfies P{IPAL) = PP (i) is identi-
fied based on previous knowledge, and thus testing p;;p,\i;) =0
is equivalent to testing p;;p/(;j) = 0. In this way, the condi-
tioning set in the testing can be simplified if P’(i, j) is smaller
than P;\{i}. In the present article, however, we identify a subset
R(i,j) € P;\{i} based on test results at previous stages where
R(i,j) satisfies the condition that p;;p,\(;) = 0 is equivalent to
PijiR(j) = 0. Knowing R(i, j), we can likewise transform the
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null hypothesis pyp)\(i} = 0 t0 pjR(,j) = 0. Because we do
not require PP\ = Py|R(,j)> More aggressive reduction in
the conditioning set often can be achieved. Furthermore, the re-
duction is based on testing results at previous stages, not on
the physical knowledge that might not be always available. In
the next section we present the proposed methodology for con-
structing the CG of a process with detailed procedure to identify
the simplified conditioning set R(i, j).

3. CHAIN GRAPH BUILDING AND CONDITIONING
SET SIMPLIFICATION FOR
MANUFACTURING PROCESSES

To build the CG of a process, our proposed procedure starts
at the leftmost stage and examines the direct influential relation-
ships between node j, 1 <j < g, and each i € P; in the order of
stages. Using the process in Figure 2 as an example, in the first
step, the relationships between nodes 1 and 2, and nodes 1 and 3
are examined. Then node 4 is taken into consideration, examin-
ing the relationships among nodes 4 and 1, nodes 4 and 2, and
nodes 4 and 3, and so on, up to the last node in the process, g.
The relationship between node i and j is determined by testing
the hypothesis

Ht{j PRy =0 versus

O]

K pijiRaj) # O, l<i<j=<g,

and a directed edge is drawn from i to j if H,fj is rejected. In (4),
the simplified conditioning set R (i, j) is a subset of P;\{i} such
that Piji Pt} = 0 is equivalent to Pij|R(ij) = 0.

3.1 Identifying the Simplified Conditioning Set R(, /)

One critical step in the foregoing procedure is identifying the
set R(i,j). Using the tool of d-separation in graphical models,
a theorem can be derived to provide the theoretical foundation
for identifying R (i, j).

Theorem. Let A, B, and Q be disjoint subsets of the node set
V of adirected, acyclic graph D = (V, E), and let Q; be a subset
of Q. X4, X, and Xg are the random variables denoted by
A, B, and Q, which have a positive joint density with respect
to a product measure. If either of the following conditions is
satisfied:

(I) Qj d-separates A and Q\Q, and X4, X3, and Xg follow
a joint normal distribution, or
(II) Q; U B d-separates A and Q\(Q,

then A 1L B|Q < A LL B|Q;.

The proof is given in the Appendix. This theorem implies
that testing the conditional independent relationship between
A and B given Q is equivalent to testing that given Q. In other
words, in this testing, the conditioning set Q can be equivalently
reduced to a subset of Q. Also note that the graphical condition
(I) holds only for Gaussian distributions, whereas condition (II)
holds for all distributions with positive joint density. Therefore,
both conditions can be applied in the situation considered in this
article.
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Figure 4. Available relationships in identifying the relationship between i and j. (a) The general case. (b) An example where i =5, j = 8.

The two graphical conditions can be intuitively interpreted
in terms of the reduced part of the conditioning set, Q\Q;. Es-
sentially, this says that if there is no dependence between some
variables of the conditioning set (i.e., Q\ Q1) and A given the re-
maining variables in the conditioning set (i.e., @;) or all of the
other variables (i.e., ) U B), then these variables contain no
information explaining the dependence between A and B, and
thus they can be removed from the conditioning set. In other
words, generally speaking, only those variables that have de-
pendence with both A and B given others should be kept in the
conditioning set. Based on this theorem, a heuristic procedure
for the conditioning set simplification can be established as fol-
lows.

Procedure for Identifying R(i,j). Figure 4(a) shows a gen-
eral case of the available relationships when the partial corre-
lation between nodes i and j, at S,, and §j, is to be tested. In
the figure, all of the relationships among the variables in P;

.and those between jand 1, 2, ...,i — 1 are known according to
previous tests, whereas those between j and ¢ € P, ¢t > i, have
not been tested. Figure 4(b) is an example of a specific process
where g =10, m=3,1=35, i=35, and j = 8. Later we use this
example to demonstrate the procedure for identifying R(, j).
The four steps of the procedure are as follows:

Step 1: Obtain the saturated graph G(i,j). The saturated
graph can be easily obtained by first removing other nodes in
J’s stage and nodes in later stages (thus keeping only nodes in
P; U {j}) and then adding edges to all of the untested pairs. For
the example shown in Figure 4(b), nodes 9 and 10 should be
removed, and edges should be added to the three untested pairs,
{5, 8}, {6, 8}, and {7, 8}. The resulting saturated graph, G(i, j),
is shown in Figure 5. This graph is constructed for two reasons.
First, because our focus is the relationships within P; U {j}, the
nodes in the same stage as j and those in later stages can be
ignored, because they will not influence these relationships in a
manufacturing process. Second, because the edges between the
untested pairs are unknown at the moment, it is natural and safe
to assume that they exist.

Step 2: P\{i} - CUM. In G(i,j), without considering
node j and the edges pointing to it (as if j is removed from

the graph), the subset M is defined as i’s parents and those that
have common children with i, whereas C is defined as i’s chil-
dren. Actually, the set M U C is referred to as the Markov blan-
ket of i (Lauritzen 1999). For example, Figure 5 readily shows
that M = {1, 2, 3, 4} and C = {6}, as shown in Figure 6(a). Here
nodes 2, 3, and 4 in M are parents of 5, whereas node 1 has a
common child, node 6, with 5.

It is known that the Markov blanket of i (i.e., C U M)
d-separates i and P;\{{}\(C U M) (Lauritzen 1999). Accord-
ing to (I) of the Theorem (let A = {i}, B = {j}, Q = P;\{i}, and
Q1 = CUM), Pj\{i} can be equivalently reduced to C U M.
Note that variables in C always should be kept in the condi-
tioning set, because directed edges exist between each of them
and j. This is why we should only consider the division of M in
the next step.

Step 3: CUM — CUM; UM,. In G(i,)), considering the
trails from the nodes in M to j, M can be divided into three
subsets, Mo, M1, and M>, as defined here. For each k € M:

¢ If there is an edge from k to j, then k € M/, and we say that
there is a direct trail from k to j.

e If there is no direct trail from £ to j, but given {i{j UCU
(M\(k}), there is an active trail from k to j, then k € M,
and we say that there is an indirect trail from k to j.

o If there is neither a direct nor an indirect trail from % to j,
then k € My and we say that there is no active trail from k
toj.

By the foregoing definitions, for the example, M; = {2},
M; = {1,4}, and Mp = {3}, as shown in Figure 6(b). Note

Figure 5. The identified saturated graph.
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Figure 6. The identified important subsets in G(i, j): (a) M and C;
(b) Mo, My, and My; (c) B and CF.

that the indirect trail from 1-8 is the trail containing only
one intermediate node, 7, which is not in the conditioning set
{S}UCUWM\{1}) (i.e, (2,3, 4,5, 6}), and at which the arrows
of the trail do not meet head-on. According to the definitions of
My, My, and M,, it is easy to get that C UM UM, d-separates j
and Mp. By (II) of the Theorem (let B = {i}, A = {j}, 0 = CUM,
and Q) = CUM,; UM3), CUM can be equivalently reduced to
CUM, UM,

Step 4: CUM| UM, > CUM; U (M\B) U CF whenever
B and CF exist. In G(i, j), denoting the set of (intermediate)
nodes on the indirect trails from M, to j as F, sometimes it
also is possible to find a subset B € M; and a corresponding
subset CF C F that smaller than B (i.e., |B| — |CF]| is positive,
where | - | is the number of nodes in a set), such that if CF is
added into the conditioning set, then (a) the indirect trails from
B to j are blocked [i.e., given {i} U C U (M\B) U CF, there is
no longer an active trail from B to j], and (b) the classifications
of other nodes in M will not be changed [i.e., given {i} U CU
(M\{M2\B}) U CF, there is still an active trail from M>\B to j,
and given {i} U C U (M\Mp) U CF, there is no active trail from
My to j]. (The direct trails from M; to j always exist.) When the
satisfying pair of subsets, B and CF, is not unique, the one with
maximized |B| — |CF| will be chosen. In simple cases, B and
CF can be identified through manual inspection. For example,
in Figure §, it is easy to get that B =M, = {1, 4} and CF = {7}.
The two sets are shown in Figure 6(c).

In the same way as in Step 2, we can prove that P;\{i} also
can be equivalently reduced to C UM U CF. Moreover, B and
CF are defined such that C U M; U (M2\B) U CF d-separates
Jj and Mp U B. According to (I) of the theorem [let B = {i},
A={},0=CUMUCF, and Q1 = CUM; U (M\B) UCF],

TECHNOMETRICS, NOVEMBER 2007, VOL. 49, NO. 4

LI ZENG AND SHIYU ZHOU

[ Obtain saturated graph G(i, ) |

[Identify M, C, M;, M,, M,, B,CF |

[ ®ij)= COM,U(M, B)UCF |

Figure 7. The procedure to identify R(i, j).

C UM U CF, and thus P;\{i} can be equivalently reduced to
CUM; U(M>\B)UCF.

Based on these four steps, we obtain that generally R(i, j) =
CUM; U (M2\B)UCF. The expression can be simplified under
various special conditions:

o f M=0or My UM; =@, then R(i,j) =C.
o f M UM; #@ and B=0, then R(i,j) = CUM| UM;.
o If B# @, then R(i,j) = CUM; U (M2\B) UCF.

It is worth pointing out that sometimes, if identifying B and
CF proves difficult, then a simplified and faster procedure can
be just identifying M, C, M|, M, My and take C UM U M; as
R(i,J). Clearly, the resulting R(i,j) might not be the small-
est conditioning set, but it often is significantly more simplified
than the original one, P;\{i}. The entire procedure is summa-
rized in the flow chart shown in Figure 7.

3.2 The Partial Correlation Test

After R(i,j) is identified, testing on p;R(j) can be con-
ducted. Assume that ry;R ) is the corresponding sample par-
tial correlation, N is the sample size, and k(i,j) denotes the
number of variables in R (i, ). Let

1. 1+ Ry

ZHRG)) = 5 log and

1 = 1Ry

1 1+ p5Rray)
e = — |og —— LT
SijiRG.j) 3 g 1— PR

We know that (Anderson 2003)

VN =3 — kG, ) (zgRa = SiRrap) ~NO,1),  asN - oo,

where N(0, 1) is the standard normal distribution. For the test
in (4), the null distribution is

VN =3 = k@i, Dzjra g ~ N, 1).
Thus the following statistic is used:
wij = /N =3 — k(i, Dzij|R(ij)»

and Hj; is rejected if |wy| > &~1(1 — a/2), where ®~! is the
inverse cumulative distribution function of N(0, 1) and « is the
specified type I error.
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4. CASE STUDY

Here we apply the proposed methodology to the car body as-
sembly process described in Section 1. For this typical car body
assembly process, approximately 40 stages and 390 KPCs are
measured and inspected. Because of the process’s complexity,
it is especially important to identify the direct influences among
the KPCs. For simplicity, we selected 14 KPCs to validate the
proposed methodology. These KPCs denote the position devia-
tions of some important features. The physical layout of these
KPCs in the process and in the case study are illustrated in Fig-
ures 8(a) and 8(b). The assembly process is simulated in 3DCS,
a commercially used dimensional variation simulation software
for assembly and machining processes. This software is based
on the governing physical laws in joining to simulate the as-
sembly process and is widely used in practice for dimension
management. The simulated measurement data set is available
from the authors on request. In the simulation, the sample size
was set to N = 100. The type I error for each test was set at
a = .005, and the critical value was calculated as 2.807 (see
Sect. 3.2).

The constructed CG is shown in Figure 9. Table 1 lists the
test results of the eight direct influential relationships identified
among the 14 KPCs, with “corr” denoting partial correlation.
It is clear that using the proposed methodology greatly simpli-
fies the conditioning sets involved in the tests. Many of these
sets include no variable, and, consequently, the corresponding
partial correlations degrade to simple correlations.

It is also verified that all of these relationships can be inter-
preted in terms of their physical interactions. For example, the
direct influences among the 4th KPC (X4) the 9th KPC (Xy), and
the 10th KPC (X;0) which denote the x-direction deviations of
three points on the flush surface of the right body side, the right
rear edge of the roof, and the outer surface of the rear door,
can be clearly confirmed by the physical steps in the process,
as shown in Figure 10. Figure 10(a) shows that to form the car

(@
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Laver3

Layer 4

Layer$
Layer 6

Layer7

Layer 8

(b)

- 000
®
Y=Y

@:

S,

&

S,

Figure 8. Physical layout of the selected KPCs. (a) Selected KPCs
and layout in the process. (b) KPC layout in the case study.
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Figure 9. The constructed chain graph of the car body assembly
process.

frame, the left and the right body sides are welded on the un-
derbody, after which the roof bows are added by the fixtures lo-
cated on the body sides. Once the car frame is finished, the roof
is welded in place by the fixtures on roof bows, as illustrated in
Figure 10(b), and rear door is installed on the frame by hinges
attached on the body sides after roofing, as in Figure 10(c). Be-
cause of the critical role of body sides in deciding the positions
of roof and rear door, it is easy to understand the two direct in-
fluences from X; to X9 and Xjo. The physical steps also explain
the nonexistence of a direct influential relationship between Xg
and Xjp, because it is clearly shown that the influence from Xy
to Xjg is due to Xj.

5. SUMMARY AND DISCUSSION

In this article we have presented a methodology to conquer
the interstage complexity in manufacturing processes with com-
plex topologies. A statistical testing procedure has been devel-
oped to construct the CG representing the direct influential re-
lationships among KPCs. The proposed procedure can signif-
icantly reduce the redundancy in testing and thus improve the
detection power.

Several interesting open issues remain in the proposed
methodology. First, we have developed the CG building pro-
cedure under assumption (A1l). In practice, there are cases in
which (A1) does not hold, that is, there are direct influential
relationships among variables at the same stage. One way to
handle this situation is to “artificially” separate the KPCs into
different stages based on previous process knowledge, as de-
scribed in (A1). When previous knowledge is not available, the
proposed method also can be extended by assuming that there
are undirected edges between any two nodes at the same stage
and changing the definition of P; to be all of the variables at
J’s stage and preceding stages. Moreover, because the graph

Table 1. Test results of the identified relationships

Test Partial correlation Statistic
1 corr(2, 5) -3.0717
2 corr(5, 8) -3.3176
3 corr(4,9) 7.8978
4 corr(4, 10/9) 8.1556
5 corr(6, 12) 4.6126
6 corr(3, 13) 7.2648
7 corr(6, 13{12) —3.3438
8 corr(3, 14) 3.7819
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(a)
Roof bow

Underbody

Body side

(b)
Roof

Figure 10. Interpretation of two identified direct influences. (a) The
car frame. (b) Roofing process. (c) Rear door installation.

now includes both directed and undirected edges, the concept
of d-separation defined for DAGs can no longer be used. In-
stead, some analogous separation criterion (Bouckaert and Stu-
deny 1995) or equivalent idea, such as moral graph (Lauritzen
1996), is used in identifying the simplified conditioning set. But
this extension is not optimal considering the complexity of the
resulting procedure, and further research is needed. The second
open issue in the proposed method is the identification of sets
B and CF presented in Section 3.1. In simple cases, these two
sets can be identified by human inspection; however, when the
set of M, and the corresponding set F are quite large, an ef-
ficient algorithm is needed to identify B and CF. Finally, the
overall false-alarm rate and detection power of the proposed
procedure are also worth examining. Due to the iterative nature
of the proposed technique, the errors (especially type II errors
corresponding to missing edges) will propagate in the iterative
testing process and thus affect the overall accuracy of the pro-
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cedure. It is interesting, yet challenging to investigate the major
factors that influence the overall false-alarm rate and detection
power. This is our current research, and we will report the re-
sults in the near future.
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APPENDIX: PROOF OF THE THEOREM

Let X,Y,Z, and W be random vectors. The following prop-
erties of conditional independence are used:

(P) X UL Y|Zand X 1L W|Y,Z & X 1L (W, Y)|Z
(P2) X LLY|W,Zand X 1L W|Y,Z & X 1L (W, Y)|Z
(P3) XL (W,")|Z=>X 1L Y|Zand X 1L W|Z
(P4) X LLY|Zand X 1L W|Z = X 1L (W, Y)|Z.

Properties (P1)~(P3) hold whenever X, Y, Z, and W have a
positive joint density with respect to a product measure. (P4) is
true whenever X, Y,Z, and W are jointly normal (Drton and
Perlman 2005; Whittaker 1990).

Let us first consider condition (I). Given Q\Q; 1L A|Q;, if
A U BJQ, then, by (P1),

A Ll {B,O\@1}IQ1.
Applying (P3) leads to
A 1L B|0.

If, on the other hand, A 1L B|Q, then by (P4), A 1L {B, Q\
01}1Q1 will result once again. By (P2),

A 1L {B,O\C1}{Q1 = A 1L B|O\Q1, Q1 =A 1L BiQ.

Thus (I) holds.
Similarly, we can obtain that, given Q\Q; 1L A|Qy, B,

A1 BB AL (B,0\01}I0: B4l BO,.

On the other hand,

A1 BIO B A1 (B,0\01)10: B A1 B|Q.

Thus condition (IT) holds.

It is worth noting that condition (I) depends on all four prop-
erties and thus holds only for normal joint distributions. Con-
dition (II) needs only the properties (P1)~(P3) and thus can be
applied to any joint distribution with positive density.

[Received July 2005. Revised May 2007.]
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