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Kinematic Analysis of Dimensional Variation
Propagation for Multistage Machining
Processes With General Fixture Layouts

Jean-Philippe Loose, Shiyu Zhou, and Dariusz Ceglarek

Abstract—Recently, the modeling of variation propagation
in complex multistage manufacturing processes has drawn sig-
nificant attention. In this paper, a linear model is developed to
describe the dimensional variation propagation of machining
processes through kinematic analysis of the relationships among
fixture error, datum error, machine geometric error, and the
dimensional quality of the product. The developed modeling tech-
nique can handle general fixture layouts rather than being limited
to a 3-2-1 layout case. The dimensional error accumulation and
transformation within the multistage process are quantitatively
described in this model. A systematic procedure to build the model
is presented and validated. This model has great potential to be
applied toward fault diagnosis and process design evaluation for
complex machining processes.

Note to Practitioners—Variation reduction is essential to im-
prove process efficiency and product quality in order to gain a
competitive advantage in manufacturing. Unfortunately, variation
reduction presents difficult challenges, particularly for large-scale
modern manufacturing processes. Due to the increasing com-
plexity of products, modern manufacturing processes often
involve multiple stations or operations. For example, multiple
setups and operations are often needed in machining processes to
finish the final product. When the workpiece passes through mul-
tiple stages, machining errors at each stage will be accumulated
onto the workpiece and could further influence the subsequent
operations. The variation accumulation and propagation pose
significant challenges to final product variation analysis and
reduction. This paper focuses on a systematic technique for the
modeling of dimensional variation propagation in multistage ma-
chining processes. The relationship between typical process faults
and product quality characteristics are established through a
kinematics analysis. One salient feature of the proposed technique
is that the interactions among different operations with general
fixture layouts are captured systematically through the modeling
of setup errors. This model has great potential to be applied
to fault diagnosis and process design evaluation for a complex
machining process.

Index Terms—Dimensional errors, kinematic analysis, multi-
stage machining processes, variation propagation.
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NOMENCLATURE

Global coordinate system.

Part coordinate system.

Local coordinate system attached to a
feature.

Homogeneous transformation matrix
(from Ato Bmeans H -t = t4).
Differential motion vector and the
associated HTM.

HTM from the GCS to the PCS.

HTM from the °PCS to the PCS.

HTM from the GCS to the °LCS expressed
in °PCS.

HTM from the °PCS (PCS) to the °LCS
expressed in "PCS (PCS).

HTM from the GCS (PCS) to the LCS.

HTM from °LCS expressed in °PCS
(PCS) to LCS.

Overall deviation of the PCS from its
nominal position (at stage k).

Overall deviation of the jth feature.
Overall deviation of the feature contacting
the kth locator.

Collective vector regrouping the
deviations of the features used as datum
(at stage k).

Position of the ith locator in the GCS.
Collective vector of the position of the m
locators in the GCS.

Position of the point contacting the kth
locator in the PCS.

Vector of the positions of the points
contacting the m locators in the PCS.
Norm to the surface at the feature
contacting the kth locator in the PCS.
Collective vector of the norms contacting
the m locators in the PCS.

Error due to the fixture.

Fixture error for the kth locator.
Collective vector regrouping the m fixture
errors (at stage k).

Error due to the location and orientation
of the datum.
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Fig. 1. Illustration of variation propagation.

P, Contacting condition equation for the ¢th
locator.

0] Collective touching condition equation for
the m locators.

J Jacobian of the constraint equation.

Xp (Xg+1) Stack vector at stage k(k + 1) regrouping

the deviations of the features.

I. INTRODUCTION

ACHINING processes are used to remove materials

from a workpiece to obtain higher dimensional accu-
racy, better surface finishing, or a more complex surface form
which cannot be obtained by other processes. Dimensional
variation reduction of the product is a crucial engineering
objective in both design and manufacturing stages [1], [2].
Unfortunately, variation reduction for machining processes is
a challenging problem, particularly for a process that includes
multiple operation stages.

A “multistage” machining process refers to a part that is
machined through different setups. A multistage machining
process might not necessarily contain multiple machining
stations. If there are different setups on only one machining
station, this machining process is still considered as a multi-
stage machining process. When a workpiece passes through a
particular stage of a multistage machining process, the errors
of this stage will be accumulated on the workpiece. These
errors, in turn, will affect the machining accuracy at subse-
quent stages. Clearly, for a multistage machining process,
product dimensional variation at a certain stage consists of two
components: 1) local variation caused by variation sources at
current machine stage; and 2) propagated variation due to the
machining errors at previous stages. The propagated variation
exists because we have to use part features produced at pre-
vious stages as the machining datum in the current operation.
In multistage assembly processes, the propagated variation is
also called reorientation error [3]. This can be illustrated by
a simple two-step machining process as shown in Fig. 1. The
workpiece is represented as a metal cube (the front view is
shown in Fig. 1). Perpendicularity between the drilled hole and
surface D represents the workpiece quality and is defined by
geometric tolerancing as shown in Fig. 1. In Case 1, the quality
problem of Op. 2 is caused by datum error, which is produced at
Op. 1. Therefore, the quality variation in case 1 is a propagated

variation. In Case 2, the quality problem (nonperpendicularity)
is due to a local fixture error. Therefore, the quality variation
in case 2 is a local variation at Op. 2. From this example, it is
clear that the product dimension quality is a function of local
and propagated variation sources in a multistage process.

Owing to the complexity of a machining operation, various
types of local error sources exist in a single operation. The error
modeling and compensation of local variation is an established
field. A substantial body of literature can be found on the mod-
eling and compensation of machine geometric errors [4]-[8];
thermal errors [9]-[12]; fixture-induced errors [13]-[16]; and
force-induced errors [17]-[19]. These techniques address the
links between product dimensional quality and local process
error sources in a single operation.

The propagated variation is caused by the datum feature
error produced from previous stations. Due to the complicated
interactions among different stages, limited attempts have been
made on the variation propagation analysis for a multistage
machining process. Lawless ef al. [20] and Agrawal et al. [21]
investigated variation transmission in both assembly and ma-
chining processes by using a first-order autoregressive model.
Jin [22] and Ding et al. [23], [24] proposed a state space model
to depict variation propagation in a multistage assembly process.
However, their approach cannot be applied directly to machining
processes. Huang et al. [25] proposed a variation propagation
model for a multistage machining process. Zhong et al. [26]
proposed a model to study the variation propagation including
workpiece deformation. Still, these are nonlinear or numerical
simulation-based models which provide limited physical in-
sights. Most recently, some researchers proposed the use of a
state-space model to describe dimensional variation propaga-
tion in a multistage machining process [27], [28]. The state-
space model provides a good framework for modeling variation
propagation. However, the existing techniques require specific
fixture setups (e.g., an orthogonal 3-2-1 fixturing layout [29])
and cannot be applied to a general nonorthogonal fixture layout.

In this paper, we develop a state-space modeling technique
for dimensional variation propagation of multistage machining
processes with general fixture setup schemes. This model al-
lows for a general fixturing scheme beyond the 3-2-1 layouts as
well as for non-fully constrained setups. The process and pro-
duction information are quantitatively integrated into the system
matrices of this model. This model can be used for process eval-
uation and analysis in design and root cause identification in
manufacturing for multistage machining processes. The model
derivation is presented in Section II. Section III presents a case
study to illustrate the derivation and validate the results. Finally,
the conclusions and some discussion of the applications of this
model are given in Section IV.

II. DERIVATION OF THE VARIATION PROPAGATION MODEL

A. Problem Formulation

We first identify the boundary of the developed model. There
are different ways to classify the process errors. In this paper, we
classify the process errors based on their physical sources. Fig. 2
lists the basic process error sources and the dimensional quality
evaluation criteria used in engineering practice for a machining
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Fig. 2. Machining error sources and evaluation criteria.

process. The process error sources consist of machine errors
caused by machine geometric accuracy, thermal error, etc.; setup
error due to the fixture and datum errors; and finally, force-in-
duced error caused in part by deformation during cutting. The
variation propagation is caused by the datum error. Standards
for geometric dimensioning and tolerancing (GD&T) were de-
veloped in order to regulate the deviation of the workpiece fea-
tures. These standards provide a description of the dimensional
and geometric accuracy of a workpiece.

Another way of classification is to classify the errors into two
categories: systematic and random errors. Systematic errors are
constant and repeatable and can be viewed as a constant offset,
whereas random errors arise from random fluctuations in the
system. This classification overlaps the previous one. For ex-
ample, the fixture error can be both systematic error (e.g., an
error in fixture setup can make one locator consistently higher
than the others) and random error (e.g., a locator could become
loose and the error direction changes). In the proposed model,
we can consider both systematic and random fixture error.

Given the complexity of machining processes, it is very
difficult, if not impossible, to develop comprehensive analytical
models of the relationship between all error sources and all
quality measurements. To limit the scope of this model, in this
paper, we focus on the analytical modeling of the relationship
between setup errors and dimensional (location and orientation)
variation propagation in a multistage process. Since the setup
error (datum error in particular) is the key cause of variation
propagation, the influence of setup error on product quality will
be thoroughly studied through kinematic analysis. Although
other types of errors are not studied in this paper, interfaces
to other errors are included in the developed model, making
the model flexible: the model can be extended to include other
errors components influencing the product quality (e.g., thermal
error). The rationality for considering only dimensional instead
of both dimensional and geometric variations is that this model
focuses on describing the machining variation propagation
among different stages. Since most of the geometric variation is
determined on a single stage and remains unchanged throughout
the whole process, it is unnecessary to build a model describing
its propagation. Therefore, geometric variation is not included
in this model.

In order to model variation propagation in complex mul-
tistage manufacturing processes, a chain-like state transition
framework as used in [28] is adopted here (Fig. 3).

For a N-stage process, the model is in the form of

Xp = Ap_1Xp—1 + Brepr + wipand yp = Cpxp + v (1)
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Fig. 3. Diagram of a complicated multistage manufacturing process.
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Fig. 4. Concept of the state vector.

where k = 1,2,..., NV is the stage index. The key quality char-
acteristics of the product (e.g., dimensional deviations of key fea-
tures) after each stage are represented by the state vector xj. The
state vector Xy, 18 a stack of random variables. The datum errors
are incorporated in X, and, thus, the propagated variation is cap-
tured by A_1x5_1. The local process errors (e.g., fixturing er-
rors and machine errors) are denoted by ey,. Therefore, the local
variation is captured by Byey. The vector ey, is a random vector
that accounts for both systematic and random local errors. For ex-
ample, a mean shift of a variable in e, can describe a systematic
error of a locating pin consistently higher than the others; and the
variance of a variable in e; can describe a random error of a
loose locating pin moving in different directions.

For our purpose, we will focus on the derivation of Aj and
B corresponding to the datum and fixture errors. However,
it is clear that this model is flexible enough to incorporate er-
rors from other processes given the open structure of the model
as shown in (1). Natural variation and unmodeled errors in the
process are represented by a noise input to the system wy. The
product quality measurements are collected in y . The measure-
ment noise, including systematic and random measurement er-
rors, is denoted by vector vy.

In this paper, in order to capture the dimensional quality, in-
cluding the position and orientation of the key features of the
product, the state vector x;, is defined as a stack of differential
motion vectors [31], [32] that represent the position and orien-
tation deviations of the key features. This concept is illustrated
in Fig. 4 utilizing a cylindrical feature. The design nominal lo-
cation and orientation of the cylindrical feature can be repre-
sented by a local coordinate system x(¥yozo. The true location
and orientation of the cylinder after machining can be repre-
sented by another local coordinate system x1y; z1 . Then, the di-
mensional error of this feature can be represented by a homoge-
neous transformation matrix (HTM) from x¢¥y020 to 21y 21. For
small errors, the HTM from xyy02o to £1y121 can be approx-
imated in the format shown in Fig. 4. The translational devia-
tion, denoted as [, 3, 2] T, and the orientation deviation, denoted
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Fig. 5.

Errors and their accumulation in a machining operation.

as [e1,ea,e3]T, can be stacked up to form a differential mo-
tion vector [31], [32]. Using this 6 by 1 vector, the deviation of
both the location and the orientation can be captured. This rep-
resentation is also consistent with the working principle of the
modern computer-aided design/computer-aided manufacturing
(CAD/CAM) system and the coordinate measurement machine
(CMM) [33], [34], a popularly used dimensional quality inspec-
tion device. We can easily evaluate the deviations of features in
terms of the vector by comparing the nominal design with the
CMM output.

The complicated variation propagation is handled automati-
cally in this model through the state transitions. To construct this
model, we need to study locally the relationship among x5 _1,
X1, and ey, at each individual stage k. In the following section,
we will systematically investigate this relationship to provide
an analytical expression of the coefficient matrices for a general
multistage machining process.

B. Model Derivation

A machining operation at a particular stage includes three
steps: 1) locating and clamping the part in a fixture; 2) placing
the fixture on the machine working table (for some dedicated
machines, the fixture is already built in the machine); and 3)
cutting the part to desired specifications. To describe the dimen-
sional errors involved in the whole operation, six coordinate sys-
tems are involved as illustrated by Fig. 5. The dash-line object
in Fig. 5 represents the nominal location of the workpiece and
the solid-line object indicates the true location.

These coordinate systems are described as follows:

1) Coordinate system (CS) 1 is the global coordinate system

that is often selected as the machine coordinate system.

2) CS 2 is the design nominal part coordinate system which
represents where the part should be located under ideal
conditions.

3) CS 3 is the actual part coordinate system. The deviation
between CS 2 and CS 3 is due to fixture and datum errors.
This deviation can be represented by a differential motion
vector q.

4) CS 4 is the nominal coordinate system of the :th feature of
the part with respect to CS 2. As new features are generated
through cutting, CS 4 is also the nominal coordinate system
locating the sth cutting tool path.

5) CS 5 is the nominal coordinate system of the sth feature of
the part with respect to CS 3. Please note that the transfor-
mation from CS 2 to CS 4 and the transformation from CS
3 to CS 5 is the same.

6) CS 6 represents the true location of the ¢th feature. It is also
the true location of the «th cutting tool path.

The transformations between these coordinate systems are
also labeled in the figure. In addition to those transformations,
H(q,), H(q;), and H(q}) are the homogeneous transformation
from CS 2 to CS 3, from CS 4 to CS 6, and from CS 5 to CS 6,
respectively, where H(q) is defined as the homogeneous trans-
formation matrix determined by a differential motion vector q
as shown in Fig. 4. The following notation is used in this paper.
The left superscript O indicates the nominal values. A notation
without prime indicates a value with respect to the global co-
ordinate system. A notation with prime indicates a value with
respect to the part coordinate system. A notation with double
prime indicates a value with respect to the local feature coordi-
nate system. Please refer to the nomenclature section for a com-
prehensive list of notations.

From the aforementioned description, it is clear that the ideal
location of the newly generated +th feature should be at CS 5,
corresponding to the position of the nominal feature in the true
part coordinate system. However, since the final location of the
newly generated feature is at CS 6, where the cutting tool is,
we need to find the value of g/ that represents the deviation be-
tween CS 5 and CS 6. This deviation can be decomposed into
two sources: 1) the deviation from CS 4 to CS 6, which is due
to the geometric error of the machine and 2) the deviation from
CS 4 to CS 5, caused by datum and fixturing errors. The ma-
chining errors q; can be further decomposed into thermal, geo-
metric, and/or cutting force-induced errors. In order to deter-
mine the deviation from CS 4 to CS 5, we developed a general
analysis procedure to obtain the model linking the fixture error,
datum error, and the deviation of the part coordinate system,
represented by q,,. The fixture error is denoted as uy, for the kth
locator, which is a 3 by 1 vector representing the deviation of the
locator from its nominal position. The datum error is the devia-
tion of the datum feature produced in previous stages and, thus,
it is denoted as qg-, where j is the feature index of the datum
features at the current stage. Upon obtaining q,,, the deviation
from CS 4 to CS 6 can also be obtained. The final feature devia-
tion can be achieved by combining the impacts of fixture errors,
datum errors, and machine errors together.

The following steps are involved in the derivation of ¢j.

Step 1) Derivation of q,, given fixture and datum errors.
A simple fixturing scheme with one locator is shown
in Fig. 6. Oxyz represent the global coordinate
system (GCS); O'x’y’s’ represent the part coordi-
nate system (PCS). If the +th locator is in contact
with the part surface at the ¢th contact point, then
the tangent plane to the surface at the <th point is

n” ' —nt=0 )
where t/ represents the location in the PCS of the
ith contact point of the ith locator on the part and n/
is the outgoing normal vector of the part surface at
that sth contact point. As the +th locator has to be on
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ith locator i;th contact point
nominal position ot;,

i;th contact point
true position

PCS

Fig. 7. Deviation of the ¢ th contact point.

as qp), 0T, 6T, and 6N’ can be obtained through a
differentiation operation in (5) as
od od od od

9 5q, - — | 225t T
oa,% =~ |ar?T T ar T T on

Fig. 6. Contact condition for a 3-D workpiece.

SN'| . (6)

the tangent surface which satisfies (2), we have the
constraint equation of the contact condition for the
ith locator [35]

1T T 1T
(Di:ni -Rp -(ti—tp)—n.

/
, t; =0 3)
where R, is the rotational matrix and t,, is the trans-
lational component of the homogeneous transforma-

I({)p tlp from the PCS to the

GCS and t; is the coordinate of the sth locator in the
GCS. The expression R - (t; — t;,) actually trans-
forms t; into the PCS. The physical interpretation
of (3) is that the locator and the contact point on the
part should be in the same tangent plane.

For a fixturing scheme with m locators, the m con-
straint equations for contact conditions can be com-
bined together to obtain an equation system

tion matrix H, =

By defining T = [tf---t1]",

T
T = [t ...t ], N

im

0 n’

where i; represents the index of the feaftre
) T
contacting the kth locator, d, = [t] w!]" and

w,, contain the three Euler angles of the rotational
matrix R, and (4) can be expressed as

&(d,, T,T',N') = 0. (5)

Clearly, errors in datum (a deviation in T/ and N")
and fixture (a deviation in T') will cause deviations
in d,, in order to make (5) valid. If the errors are
infinitesimal, the relationship among éd,, (denoted

Clearly, from (3), the term 0® /0N’ is always equal
to zero; the right-hand side of (6) has, therefore, only
two non-zero terms. The term 6T captures the vari-
ation due to the fixture error. The term 6T’ cap-
tures the contribution of the datum error which cor-
responds to the contribution of both the location and
orientation deviations of the datum.

Equation (6) has to be rearranged to (7), where

U = [uf~-~u?,l]T = 0T, corresponding to
the fixture error for ;he m locators and q' =
[q;? qf qi] containing the datum er-
rors produced in previous stages
0d
aqu=F1-U+Fz~q’- @)
P

The expressions of F; and F5 can be calculated
from the nominal values of the parameters.

Step 2) Calculation of F;.

Substituting u to 6T, F; is directly obtained as
RT
0 !

N
oT

F, =
RT

P

Step 3) Calculation of Fs.

The derivation procedure of F is illustrated in
Fig. 7. The vector 6T/ = [6t,’: 6t,’:7]T cor-
responds to the collective vector of the deviations
of the datum. ¢t} contains information about the
location error of the contact point on the feature
touching the kth locator. As shown in Fig. 7, this
error can be expressed as 6t; = t; — °t; . 1In
other words, this error is expressed as the difference
in the PCS of the true and the nominal position of
the contact point. Ot,’ik is known from the nominal
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conditions, because the contact point has the same
position as the nominal position of the kth locator
under nominal conditions. The value of t; can
be determined using homogeneous transformation
matrices from PCS to LCS as

tl t”
i | _ (Ogy/ / Th
{f} = ("Hi) -H(q;,) - L} 8)
where t; is the location of the kth contact point ex-
pressed in the true local feature coordinate system.
From the small deviation assumption, we assume
that the contact location expressed in the feature
local coordinate system is unchanged (i.e., t] =

17 0477
ot;/k)_ Therefore, by substituting [tlk]

ik
(°H) - [Otllk] into (8), we have

:[t1

t(i opy/ / opy/) 1 Ot//i
R R CA R I
Based on (9), finally, we can obtain 5t;k as
0 0 —1 Ot/-
Cr) (8 () -] ()~ [0

ot; ]
o'l =

Equation (10) links the deviation of the coordinate
system attached to the feature in contact with the
kth locator with the deviation of the contact point
in the PCS. By assembling together the values 6t ,
0T’ can be obtained. Noticing that 0®/9T" = —IN’
from the variation equation (6), the linear equation
system N’-6T’ = F5-q’ can be solved to obtain the
matrix F5. The general expression of Fs is listed in
the Appendix.

Step 4) Calculation of the Jacobian (0®/9d,,).

The term 0®/0d,, is the Jacobian J of the collec-
tive contact condition (4). The calculation of the Ja-
cobian is discussed in the following.

The Jacobian J of the collective contact condi-
tion (4) can be expressed as J = [J7 ... JT ],
where J; is a 1 by 6 vector as shown in the
equation at the bottom of the page, where
d, = [t] pr]T = [Zp, Yp, Zp, €1, €2, €3] denotes
the parameters of the six degrees of freedom of the
part. Without loss of generality, we can take the GCS
as the same as the nominal PCS. In that case, R, is
the identity matrix and a small deviation of the part
can be represented by a homogeneous transforma-

Jk [—TL

( /
nik.z

!

1 —E€g3 €9
tion matrix H,, with R, = e3 1 —e1 |
—€2 €1 1
then, we can explicitly calculate Jj, as
/ / / 04/ / 04/
ive Ty T Mgz (nlky ’ tikz My tiky)
04/ / 04/ / 04/ / 04/
! tik.r = Ny tikz) (nzkm : tiky - nzky : tzkz)]
/ / !/
where n;, ., n;, ,,and n;, . are the three components

in the PCS of the outgoing norm to the surface con-
tacting the kth locatorand ¢}, t; ,,and t] _ are the
three components of t; , respectively. All of the pa-
rameters involved in the calculation of the Jacobian
are known from the nominal condition.

The Jacobian is nonsingular if the workpiece is de-
terministically located; in that case, the part is fully
constrained in its 6 degrees of freedom and (11) links
the overall resulting error q, with the composition
of datum and fixture errors

qQ=J""(F - U+Fy-q). (an
The part is said to be not fully constrained if it has
at least one degree of freedom after being mounted
in the fixture. In that case, the Jacobian is singular
and the overall error cannot be directly calculated.
If the part has n degrees of freedom, n artificial lo-
cators need to be added to the existing locators in
order to fully constrain the part. The Jacobian be-
comes nonsingular and the model can be derived.
The numerical result for the deviations in the di-
rections constraint by the artificial locators does not
have any physical meaning. Therefore, those devia-
tions are set to a constant value, for example zero, as
if there was no deviation in those directions. How-
ever, since the locators controlling those directions
are artificial, the feature deviations in those direc-
tions cannot be used as known datum deviations in
the following stations.

C. Derivation of q;, of the ith Newly Generated Feature

Given the deviation q, of the PCS with respect to the GCS
due to the datum and fixture error and the deviation of the cutting
tool regarding the GCS due to the machine geometry error g,
the final deviation g} of the newly generated feature in PCS can
be obtained based on the following identity:

H(q)) = (*H)) ™ -H(q,)""- ("H}) - H(q).

12)

v Oty
P 3?Jp

)i

r OR]
661

/
ik

ot
RT.Z2 ...
b 021))

.(n

/T_aRg_

T
, v OR]
vk 862

-t ;
'k 863

ik

o 2 ) o 2 )
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S assemble the newly
generated feature
with other features

I——I

q,k+1) S, calculate the overall
deviation of the newly
generated feature

X+l

S, extract information
on datum
S, gather information
on fixture error Ji

Fig. 8. Steps of the derivation of variation propagation model.

S; combine errors
together

The details of the derivation are as follows:

Considering Fig. 5, the homogeneous transformation from
CS 2 to CS 6 can be obtained in two ways: 1) from CS 2 to
CS 4 and then to CS 6; 2) from CS 2 to CS 3 to CS 5 and then
to CS 6. In the former, the homogeneous transformation matrix
from CS2 to CS 6 can be obtained as ("H’)-H(q;). In the latter,
the same homogeneous transformation matrix can be obtained
as H(q,) - ("H;) - H(qj).

Hence, we have ("H/)-H(q;) = H(q,) - (°H}) -H(q}) and,
thus, (12) can be obtained.

In (12), q, and q; are small values and, thus, the multipli-
cation terms among the components of these terms can be ne-
glected. By ignoring these multiplication terms, the relationship
among q, dp, and q; are still linear. Without loss of generality,
we have

q;=F3-q,+Fs-q. (13)
The derivation of F3 and F4 is straightforward from (12) al-
though the expression is tedious. The details are omitted here.
Combining (11) and (13), the deviation of the sth newly gen-
erated feature can be obtained as

q;=F3-J " Fo-q +F3-J7' F;-U+Fy-q;. (14)

The first term on the right-hand side of (14) represents the
propagated errors from the previous operations because g’ is a
collection of the deviations of datum features that are produced
in previous operations. The second term represents the fixture
error at the current stage and the third term represents machine
geometric errors. By assembling the deviations of all newly gen-
erated features and linking different stages together, a compre-
hensive variation propagation model in state transition form can
be obtained. The details of this final step of the model derivation
are presented in the following section.

D. Linking Multistage Together

Fig. 8 shows the steps of the variation propagation model.
The letter k corresponds to the stage index. The vector of xj
is a collection of quality deviations of all key features on the
product after the kth stage. The deviation of each feature is rep-
resented by a 6 by 1 differential vector as illustrated in Fig. 4. If
a feature has not been generated after the kth stage, the corre-
sponding components of that feature in x;, are set to be zero, and
after it has been generated, the zero components are replaced by
nonzero deviations. The detailed procedure explaining each step
is presented below.

S1) Only the dimensional quality of the datum features will

have an influence on the deviation of the newly gener-

Fig. 9. Workpiece for the case study. (a) Isometric view. (b) Top view.

ated feature; therefore, we collect from x;, the dimen-
sional deviation of the datum features after the kth stage
to create the vector q’(k), where q’(k) contains the de-
viations of all the datum features at the (k + 1)th stage.
We use k as the index in q'(k) since these features are
produced up to the kth stage.
Gather the in-process information on fixture nominal po-
sition and fixture error U(k).
From the q' (k) and the fixture error U(k), find q,, (k+1)
asin (11).
Calculate the dimensional error for all newly generated
features q, 7 is from 1 to the total number of new fea-
tures, using (14) and the associated procedures.
Assemble the deviations of the newly generated fea-
tures and xj, together (i.e., replace the components cor-
responding to each :th newly generated features in xy
by their deviation g} to obtain vector Xj41).

This procedure can be repeated for each stage and, finally,
a chain-like state transition model can be achieved. In the next
section, a practical case study is presented to illustrate the effec-
tiveness of this modeling technique.

S2)
S3)

S4)

S5)

III. VALIDATION OF THE STATE-SPACE VARIATION
PROPAGATION MODEL

The developed variation propagation modeling technique is
validated on a multistage machining process. In this section, we
first introduce the process; then, the variation propagation model
is developed and, finally, results are validated.

A. Introduction to the Multistage Machining Process

The presented machining process is adapted from a real ma-
chining process with modifications due to confidentiality con-
siderations. It has two stages and one feature will be machined
on the workpiece at each stage through end milling.

The first operation step is to mill the top face f;. The datums
of this operation are the feature f>, feature f3, and feature f;.
Clearly, this fixture layout is not a traditional 3-2-1 layout since
the datums are not orthogonal to each other. The second opera-
tion consists of machining the inclined side f5 of the workpiece.
The datums for this operation are feature f3, feature f;, and fea-
ture f4. All features are labeled in Fig. 9.

Coordinate systems are defined on each feature. The nominal
position of the features is therefore known with respect to the
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TABLE 1
NOMINAL POSITIONS AND ORIENTATIONS OF KEY FEATURES

Feature Name 0 (1);!e 0 t;.q
N [r/2, 0, 0] [-30, 0, 0]
f [-m/2, 0, 0] [0, 80, 0]
5 [0,0.588,0]  [0,0,100]
fa [0, /2, 0] [150, 40, -85]
/s [0, -n-0.86, 0] [-100, 0, 30]

PCS by a homogeneous transformation matrix. Table I gathers
the HTM components for each feature.

The nominal location and orientation of the locators, ex-
pressed in PCS (in this case, we take GCS the same as PCS
for sake of simplicity), are given in Table II. Table II also
lists the information about the outgoing normal direction of
the datum at the nominal contact points. This information is
required to develop the variation propagation model. The last
column presented in Table II is the systematic fixture error
u;, intentionally added in the model for validation purposes.
The nonzero values in uj correspond to the magnitudes of the
fixture errors. Therefore, the nominal positions in GCS of the
locators listed in Table II are also the nominal positions in the
PCS of the contact points on the part.

Following the procedure shown in Section II, a variation
propagation model can be obtained for this two-stage ma-
chining process and measurement values are predicted.

B. Model Derivation for Stage 1

The workpiece in stage 1 is assumed to be nominal; there-
fore, x; = 030x1. By following the procedure developed in

TABLE II
NOMINAL POSITION OF THE LOCATORS IN THE GCS

Locator From o , .
Op# . t=t n;, Fixture error
index k feature
1 f [-100 80 -100]" [o1oy" [0o.10y"
2 f [20 80 801" (010" [00.10y"
. 3 f [100 80 01" 010" [0-0.050]"
4 5 [4540100]"  [0.554700.8320]"  [00-0.1]"
5 f [75 40 80]" [0.5547 00.8320]"  [0.0500.1]"
6 i [150 40 -85]" [0o1" [0.1001"
1 f [4520100]"  [0.5547 0 0.8320]" [0.100y"
2 f [75 60 801" [0.5547 0 0.8320]" [0.100y"
5 3 f [12020 50" [0.5547 00.8320]" [0.1001"
4 7 [-100 0 100]" [0-10]" [0-03 01"
5 /i [100 001" [0-101" [0-0.3 01"
6 fy [150 40 -85]T [tooy’ [0.0500]"

Section II-B, we obtain F;, shown in the first equation at the
bottom of the page. Together with

U=[0 01 0 0 0. 0 0 —0.05 0 0 0
—0.1 0.05 0 01 01 0 0F

we have the contribution of the fixture error to qp,.

Since the part is considered as nominal, there is no datum
error in this stage. Therefore, the expression of Fs will not be
given here since it has no contribution to the overall error.

The Jacobian is calculated from nominal conditions as shown
in the second equation at the bottom of the page. By assembling
the two sources of error together, we obtain the deviation q,, of
the PCS. This result is listed in Table IV. This vector represents
the deviation of the part coordinate system given the datum and
fixture errors.

0o -1 00 0 00 0 O 0 0 0 0 0 0 0 00
o 0o 00 -1 00 0 O 0 0 0 0 0 0 0 0 0
F, = 0o 0 00 O OO -10 0 0 0 0 0 0 0 0 0
0O 0 00 0 0 0 0 0 -—0.5547 0 -0.83205 0 0 0 0 0 0
o o 00 O OO0 O O 0 0 0 —0.5547 0 —-0.83206 0 0 O
o 0o 00 O OO0 O0 O 0 0 0 0 0 0 -1 0 O
0 -1 0 —100 0 100
0 -1 0 80 0 -20
J— 0 -1 0 0 0 —100
—0.5547 0 —0.83205 —33.282 —18.0278 22.1880
—0.5547 0 —0.83205 —33.282 18.0278  22.1880
-1 0 0 0 85 40
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By following the procedure in Section II-B, we calculate the
deviation of the newly created feature, the front face fi, given
its nominal position in the PCS, known by

rtr 0O 0 30
0H’fl = 8 _01 (1] 8 . We first obtain F3 :
LO 0 0 O
r—-1 0 0 O 0 0
0 0O 1 0 =30 0
F, = 0o -1 0 0 0 —-30
0 0 0 -1 0 0
0 0O 0 O 0 1
L O 0O 0 O -1 0

In this case study, it is understood that there is no machine
error (i.e., H(q;) = Lyx4). Since the PCS is taken as the GCS,
q; represents the machine error in the GCS as well as in the
PCS. Therefore, Fy = Igy¢. We obtain q’f1 and we update x;

to Xy = [qng 016 O01x6 O1x6 O1x6] -

C. Model Derivation for Stage 2

The procedure developed in Section II-B is also followed
here.

First, the contribution of the fixture error is determined by
the location error of the PCS by calculating F; shown in the
first equation at the bottom of the page with
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Since the secondary datum used in stage 2 is the feature cre-
ated during stage 1, the deviation of the datum contributes to
the overall error in stage 2. We extract from x, the informa-
tion on the features used as datum to form the vector q': The
primary datum is the feature f3 and the secondary and tertiary
datum are the features f; and fy, respectively. Therefore, we
construct q' = [q’faT q’fST q’fST
with g known from stage 1 and q¢, = q, = Ogx1. We eval-
uate F'» using the nominal position of each feature, the nominal
position of each locator in the PCS, and their associated norm
given in Table II. After obtaining F'5, shown in the second equa-
tion at the bottom of the page, the two sources of error can be
combined together and the overall deviation of the PCS can be
obtained as shown in Table IV. By following the procedure pre-
sented in Section II-B, the deviation qf of the new feature cre-
ated at stage 2 can be calculated.

We have
—0.2425 0 0.9701 0 30 0
0 -1 0 —104.2903 0  4.8507
Fa— —0.9701 0 —0.2425 0 100 0
37 0 0 0 —0.2425 0 0.9701
0 0 0 0 -1 0
0 0 0 —0.9701 —1 -0.2425

Since the PCS is taken as the GCS, and since we still con-
sider that there is no machining error, we have Fy = Igys.

U=[1 0 0 01 0 0 01 0 0 0 —0.3 We finally obtain qg_and update the state-space vector x» into
00 —03 0 005 0 0". x3=I[a}  Oixs Oixs Oixs qgaT]T.
—0.5547 0 —0.83205 0 0 0 0 0 0 000 O0OO0OO0 OO
0 0 0 —0.5547 0 —0.83205 0 0 0 000 O0OO0OO0 OO
F, — 0 0 0 0 0 0 —0.5547 0 —0.83206 0 0 0 0 O O O O O
0 0 0 0 0 0 0 0 0 010000 0 0O
0 0 0 0 0 0 0 0 0 000010 0 00O
0 0 0 0 0 0 0 0 0 000 0O0O0O-10020
0.555 0 0.832 16.64 18.02 —11.09 0 0 O 0 0 0 0 0 O 0
0 0 O 0 0 0 0.555 0 0.832 49.92 —-18.03 —-3328 0 0 O 0
Fy = 0 0 O 0 0 0 0 0 O 0 0 0 0.555 0 0.832 16.64
0 0 0 0 0 0 0 0 O 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 O 0 0 0 0 0 0 0
0 0 O 0 0 0 0 0 O 0 0 0 0 0 O 0
0 0 0 0 O 0 0 oo o0 0 O o0 O0O0O0OO0OO0O O 0
0 0 0 0 O 0 0 oo o0 0 O o0 O0O0O0OO0OO0O O 0
—-72.11 -11.09 0 0 O 0 6o 000 O O O OOOTO0ODTO O 0
0 0 0 0 -1 -100-130 0 00 0 0 0 O0O0O0OO0OTO0O O 0
0 0 0 0 O 0 6 000 -1 0-7000O0O0O0O O 0
0 0 0 0 O 0 6 000 O O O 0100 0 —8 —40
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TABLE III
3DCS MODEL RESULTS (x107%)
dy d, d. e; e e3
Stage  4,(D -400.55 62.57 285.23 -42.97  -308.54  -64.46
1 q; (D) 400.68 446.53 -28.74 0.75 -1.12 5.38
Stage  4,(2) 5.13 -237.43 63.25 -4297  -0.02 -64.46
2 q(2) 21274 10.26 21694 091 538 1.00
TABLE IV
ANALYTICAL MODEL RESULTS (x10~3) AND THE RELATIVE
DIFFERENCE FROM 3DCS RESULTS
dy d, d. e e e
q,) -402.69 62.5 285.13 -42.97 -308.52 -64.46
Stage “ (0.53%) (0.11%) (0.03%) (0.0%) (0.0%)  (0.0%)
1 q. (1) 402.69 446.66 -28.75 0.75 -1.12 5.38
i (0.50%) (0.02%) (0.03%) (0.0%) (0.0%)  (0.0%)
0.0 5.10 237.50 63.33 -42.97 0.00  -64.46
Stage ’ (0.58%)  (0.03%) (0.13%) (0.0%) ) (0.0%)
2 @) 211.89 10.25 -216.51 -0.91 538 1.00
fs

(039%)  (0.09%) (0.20%) (0.0%) (0.0%)  (0.0%)

D. Validation of the Model Prediction

To validate the model, a machining model is developed using
3DCS software, which is widely used in industry for tolerancing
management purposes. 3DCS software adopts the numerical
simulation method for the prediction of process variation and
no analytical model can be produced. Since 3DCS is standard
industrial software, we can compare our model prediction with
3DCS’s output to validate our results. In the 3DCS model, the
same fixture error is intentionally added to the process at each
stage.

The 3DCS model measurement results are listed in Table III.
The measurement gives the deviation from nominal of both the
PCS at each stage and the newly created feature with respect to
the GCS. All of the measurements are in the global coordinate
system taken as the PCS under nominal conditions. The model
prediction for the comparison is listed in Table I'V. For a plane
feature, the relevant parameter is its orientation and the distance
from the datum plane. The deviation of the orientation of a plane
is denoted by [e1, 2, e3] and the deviation of the distance from
the nominal plane is denoted by d, d,, and d..

The comparison results indicate that the difference between
the 3DCS prediction and the state transition model prediction
are very small. The discrepancy is due to the linearization of
the state transition model. The 3DCS results are from numerical
calculations based on nonlinear relationships. The results show
that the linearization error is quite small in this case: The study
of the propagation of the linearization error in the multistage
machining model would be interesting following the uncertainty
analysis method developed by Shen [30]. These issues are now
under investigation and will be reported in the near future.

IV. CONCLUSION

The complexity of a multistage machining process poses
great challenges on root cause identification and process design
evaluation. In this paper, an analytical linear model is developed
to describe the propagation of workpiece geometric deviation
among multiple machining stages. This linear model has a
state-space form and the states are the workpiece geometric
deviations. Using state transitions among multiple machining
stages, this model describes the dimensional error accumulation

and transformation when the workpiece passes through the
whole process. A systematic procedure is presented to model
the workpiece setup and cutting process in machining.

Although the developed linear model approximates the non-
linear relationship between process errors and product quality,
the linearization-induced error has been shown to be ignorable
under certain conditions (e.g., the case study presented in
Section III). However, when the number of stages increases, the
propagation of the linearization error warrants some rigorous
investigation. This is our current research and the results will
be reported in the near future.

This model has great potential to be applied to the root cause
identification for purposes of quality improvement. For a com-
plex machining process, it is often very difficult, if not impos-
sible, to identify the faulty stage if certain features of the work-
piece are out of specification. With this model which integrates
process and product information, model-based fault diagnosis
can be developed to quickly identify the faults. Although the
model is limited to setup errors, its open structure provides a
quantitative framework for further expansion. This model can
be used for fixture design and optimization. This model pro-
vides a quantitative relationship between fixture locator errors
and the geometric errors of the final workpiece. By considering
this relationship, the fixture locator design can be evaluated and
optimized. All of these potential works will be pursued and re-
ported in the future.

APPENDIX

We provide the general expression of F'5 in this appendix. If
we define the following matrices:

[1 0 0 0 g 8 _01 g
E;=]10 1 0 0|, E;= :
001 0 01 0 0
B 00 0 O
ro 0 1 0 0 -1 0 0
0 000 1 0 00
E3— -1 0 0 0 and E4_ 0 0 0 0
LO O 0 O 0 0 0 0
Gzl,ik _ni,‘,T -Eq - OH,IL»
0 0 0o, ()
G?,ik _nng_ [0 1 0]_0H2_E2_(0H(i)—1
o 0 1 0]-oH B, (0H)
0
|t
1
[0 0 0o B, (R
G?,ik— ’/iL-T' [0 1 0 0]'0H2~E3~(0H;)_1
L[0 0 0]-°H, - Es - (“H,) "
Otl
. ik
)
1o 0]~°H§~E4~(0H;)_1'
Gilk— iAT [0 1 O]OH/LE4(OH{L)—1
b0 ook )
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r 1 0 0
0 1 0
1 1 1 2 3 4
Gi,il : 0 Gi,il ) 0 Gi,’il ) 1 Gi,il Gi,’il Gi,il
0 0 0
Fy=
0

1

7’77‘771,

1

Uy

1

g 17’777,

G}, G}, Gi

7’77‘771, 7‘7/er7 7‘7/er7

OO O
oS o= O
o = O O

then F'5 can be expressed explicitly as shown in the equation at
the top of the page.

ACKNOWLEDGMENT

The authors would like to thank R. Kumar, Dr. Y. Zhou, and J.
Kong from Dimensional Control Systems, Inc., for their fruitful
discussions. The authors also thank the editor and the referees
for their valuable comments and suggestions.

REFERENCES

[1] D. Ceglarek and J. Shi, “Dimensional variation reduction for automo-
tive body assembly,” Manufact. Rev., vol. 8, no. 1, pp. 139-154, 2004.

[2] D. Ceglarek, W. Huang, S. Zhou, Y. Ding, R. Kumar, and Y. Zhou,
“Time-based competition in manufacturing: stream-of-variation anal-
ysis (SOVA) methodology—review,” Int. J. Flex. Manufact. Syst., vol.
16, no. 1, pp. 11-44, 2004.

[3] B. W. Shiu, D. Ceglarek, and J. Shi, “Multi-stations sheet metal
assembly modeling and diagnostics,” Trans. NAMRI, vol. 24, pp.
199-204, 1996.

[4] V.B.Kreng, C.R.Liu, and C. N. Chu, “A kinematic model for machine
tool accuracy characterization,” Int. J. Adv. Manufact. Technol., vol. 9,
pp. 79-86, 1994.

[5] E. S. Lee, S. H. Suh, and J. W. Shon, “A comprehensive method for
calibration of volumetric positioning accuracy of CNC-machines,” Int.
J. Adv. Manufact. Technol., vol. 14, pp. 43-49, 1998.

[6] G. Chen, J. Yuan, and J. Ni, “A displacement measurement approach
for machine geometric error assessment,” Int. J. Mach. Tools Manu-
fact., vol. 41, pp. 149-161, 2001.

[71 A. C. Okafor and Y. M. Ertekin, “Derivation of machine tool error
models and error compensation procedure for three axes vertical ma-
chining center using rigid body kinematics,” Int. J. Mach. Tool Manu-
fact., vol. 40, pp. 1199-1213, 2000.

[8] J. Ni and S. M. Wu, “An on-line measurement technique for machine

volumetric error compensation,” ASME Trans., J. Eng. Ind., vol. 115,

pp. 85-92, 1993.

J. H. Lee and S. H. Yang, “Statistical optimization and assessment of

a thermal error model for CNC machine tools,” Int. J. Mach. Tools

Manufact., vol. 42, no. 1, pp. 147-155, 2002.

C.D. Mize and J. C. Ziegert, “Neural network thermal error compensa-

tion of a machining center,” Precision Eng., vol. 24, no. 4, pp. 338-346,

2000.

J. Yang, J. Yuan, and J. Ni, “Thermal error mode analysis and ro-

bust modeling for error compensation on a CNC turning center,” Int.

J. Mach. Tools Manufact., vol. 39, no. 9, pp. 1367-1381, 1999.

C. Lo, J. Yuan, and J. Ni, “Optimal temperature variable selection by

grouping approach for thermal error modeling and compensation,” Int.

J. Mach. Tools Manufact., vol. 39, no. 9, pp. 1383-1396, 1999.

J. Fuh, C. Chang, and M. Melkanoff, “An integrated fixture planning

and analysis system for machining processes,” Robot. Comput.-Integr.
Manufact., vol. 10, no. 5, pp. 339-353, 1993.
[14] E.C.De Meter, “Min-max load model for optimizing machining fixture
performance,” ASME Trans., J. Eng. Ind., vol. 117, pp. 186-193, 1995.

[15] Y.Rongand Y. Bai, “Machining accuracy analysis for computer-aided
fixture design verification,” ASME Trans., J. Manufact. Sci. Eng., vol.
118, pp. 289-299, 1996.

(9]

[10]

[11]

[12]

[13]

[16]

[17]

[18]

[19

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]
[32]
[33]
[34]

[35]

M. J. Hockenberger and E. C. De Meter, “The application of meta func-
tions to the quasi-static analysis of workpiece displacement within a
machining fixture,” ASME Trans., J. Manufact. Sci. Eng., vol. 118, pp.
325-331, 1996.

J. Yang, J. Yuan, and J. Ni, “Real-time cutting force induced error com-
pensation on a turning center,” Int. J. Mach. Tools Manufact., vol. 37,
no. 11, pp. 1597-1610, 1997.

S. G. Chen, A. G. Ulsoy, and Y. Koren, “Error source diagnostics using
a turning process simulator,” ASME Trans., J. Manufact. Sci. Eng., vol.
120, pp. 409-416, 1998.

J.R. Mayer, A. V. Phan, and G. Cloutier, “Prediction of diameter errors
in bar turning: a computationally effective model,” Appl. Math. Model.,
vol. 24, pp. 943-956, 2000.

J.F. Lawless, R. J. Mackay, and J. A. Robinson, “Analysis of variation
transmission in manufacturing processes—Part 1,” J. Qual. Technol.,
vol. 31, no. 2, pp. 131-142, 1999.

R. Agrawal, J. F. Lawless, and R. J. Mackay, “Analysis of variation
transmission in manufacturing processes—Part IL,” J. Qual. Technol.,
vol. 31, no. 2, pp. 143-154, 1999.

J. Jin and J. Shi, “State space modeling of sheet metal assembly for
dimensional control,” J. Manufact. Sci. Eng., vol. 121, pp. 756-762,
Nov. 1999.

Y. Ding, D. Ceglarek, and J. Shi, “Modeling and diagnosis of mul-
tistage manufacturing processes: part I state space model,” presented
at the Proc. 2000 Japan/USA Symp. Flexible Automation, Ann Arbor,
MLI, Jul. 23-26, 2000, 2000JUSFA-13146.

, “Fault diagnosis of multistage manufacturing processes by using
state space approach,” ASME Trans., J. Manufact. Sci. Eng., vol. 124,
no. 2, pp. 313-322, 2002.

Q. Huang, N. Zhou, and J. Shi, “Stream of Variation Modeling and Di-
agnosis of Multi-Station Machining Processes,” in Proc. IMECE 2000,
Orlando, FL, Nov. 5-10, 2000, pp. 81-88, MED-Vol. 11.

W. Zhong, Y. Huang, and S. J. Hu, “Modeling variation propagation
in machining systems with different configurations,” in Proc. ASME
MECE, New Orleans, LA, Nov. 2002, pp. 97-106.

D. Djurdjanovic and J. Ni, “Linear state space modeling of dimen-
sional machining errors,” Trans. NAMRI/SME, vol. 29, pp. 541-548,
2001.

S. Zhou, Q. Huang, and J. Shi, “State space modeling of dimensional
variation propagation in multistage machining process using differen-
tial motion vectors,” IEEE Trans. Robot. Autom., vol. 19, no. 2, pp.
296-309, Apr. 2003.

Y. Rong, S. H. Huang, and Z. Hou, Advanced Computer-Aided Fixture
Design. Boston, MA: Elsevier, 2005, 414 p..

Y. Shen and N. A. Duffie, “An uncertainty analysis method for coor-
dinate referencing in manufacturing systems,” Trans. ASME, J. Eng.
Ind., vol. 117, pp. 4248, 1995.
J.J. Craig, Introduction to Robotics.
1988.

R. P. Paul, Robot Manipulators: Mathematics, Programming, and Con-
trol. Cambridge, MA: MIT, 1981.

G. Henzold, Handbook of Geometrical Tolerancing: Design, Manufac-
turing and Inspection. New York: Wiley, 1995.

H. Z. Yau, “Evaluation and uncertainty analysis of vectorial toler-
ances,” Precision Eng., vol. 20, pp. 123-137, 1997.

W. Cai, J. Hu, and J. Yuan, “A variational method of robust fixture
configuration design for 3-D workpieces,” J. Manufact. Sci. Eng., vol.
119, pp. 593-602, Nov. 1997.

Reading, MA: Addison-Wesley,



152 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 4, NO. 2, APRIL 2007

Jean-Philippe Loose received the B.S. degree in
industrial engineering from the ENSIACET en-
gineering school of France in 2004 and the M.S.
degree in industrial engineering from the University
of Wisconsin, Madison, in 2004, and is currently
pursuing the Ph.D. degree in industrial engineering
at the University of Wisconsin, Madison.

Mr. Loose is a member of the Society of Mechan-
ical Engineers (SME) and Institute of Operations Re-
search and Management Sciences INFORMS).

Shiyu Zhou received the B.S. and M.S. degrees
in mechanical engineering from the University of
Science and Technology, Heifei, China, in 1993 and
1996, respectively, and the M.Sc. degree in indus-
trial engineering and Ph.D. degree in mechanical
engineering from the University of Michigan, Ann
Arbor, in 2000.
Currently, he is an Assistant Professor in the De-
partment of Industrial and Systems Engineering at the
ﬁ University of Wisconsin-Madison. His research inter-
ests are the in-process quality and productivity im-
provement methodologies by integrating statistics, system and control theory,
and engineering knowledge. The objective is to achieve automatic process mon-
itoring, diagnosis, compensation, and their implementation in various manufac-
turing processes.

Dr. Zhou is a recipient of the CAREER Award from the National Science
Foundation in 2006. Dr. Zhou is a member of the Institute of Industrial En-
gineers (IIE), Institute of Operations Research and Management Sciences (IN-
FORMS), American Association of Mechanical Engineers (ASME), and the So-
ciety of Mechanical Engineers (SME).

Dariusz Ceglarek (M’03) received the Ph.D. degree
in mechanical engineering from the University of
Michigan, Ann Arbor, in 1994.

He was on the research faculty at the University of
Michigan, Ann Arbor, from 1995 to 2000. In 2000,
he moved to the University of Wisconsin, Madison,
as Assistant Professor in the Department of Indus-
trial and Systems Engineering where he rose to the
rank of Associate Professor and Professor in 2003
and 2005, respectively. Previously, he was Chair of
the Quality, Statistics and Reliability Section of the
Institute of Operations Research and Management Sciences (INFORMS). Cur-
rently, he is a Program Chair for the Amercian Association of Mechanical En-
gineers (ASME) Design-for-Manufacturing Life Cycle (DFMLC) Conferences,
Corresponding Member of CIRP (International Institution for Production Engi-
neering Research), based in Paris, France, and serves as Associate Editor of the
ASME Transactions, Journal of Manufacturing Science and Engineering. He is
also on the program review panel for the State of Louisiana Board of Regents
R&D Program. His research focuses on the integration of design and manufac-
turing in product life cycle with an emphasis on multistage production systems
convertibility, scalability, and diagnosability as well as on product quality and
service. He has developed a number of methodologies for ramp-up time and
variation reduction; optimal sensing networks in manufacturing; and reconfig-
urable/reusable assembly systems.

Dr. Ceglarek has received numerous awards including the National Science
Foundation (NSF) CAREER Award; 1998 Dell K. Allen Outstanding Young
Manufacturing Engineer of the Year Award from the Society of Manufacturing
Engineers (SME); 1999 Outstanding Research Scientist Award from the College
of Engineering; University of Michigan, and three Best Paper Awards by ASME
Manufacturing Engineering Division, ASME Design Engineering Division, and
the Best Application Paper Award by the Institute of Industrial Engineers (IIE)
Transactions on Quality and Reliability Engineering.



