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Abstract: Variation reduction of manufacturing processes is an essential objective of process quality improvement. It is highly
desirable to develop a methodology of variation source identification that helps quickly identify the variation sources, hence
leading to quality improvement and cost reduction in manufacturing systems. This paper presents a variation source identification
method based on the analysis of the covariance matrix of process quality measurements. The identification procedure utilizes the
fact that the eigenspace of the quality measurement covariance matrix can be decomposed into a subspace due to variation sources
and a subspace purely due to system noise. The former subspaces for different samples will be the same if the same variation
sources dominate. A testing procedure is presented, which can determine the closeness of the subspaces under sampling
uncertainty. A case study is conducted to illustrate the effectiveness of this methodology. © 2006 Wiley Periodicals, Inc. Naval

Research Logistics 53: 383-396, 2006.
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1. INTRODUCTION

Variation reduction of manufacturing processes is an
essential objective of process quality control. Effective vari-
ation reduction can improve process efficiency and product
quality to gain competition advantages. Under normal
working conditions, the process variation is caused by the
natural variation or so-called common causes. Under abnor-
mal working conditions, the excessive process variation is
caused by process errors or so-called assignable causes.
Since product quality is determined by the conditions of
process tooling elements (such as a cutting tool, fixture, and
welding gun) in a manufacturing system, the process errors
are actually the malfunctioning tooling elements that are
responsible for the defective products.

Consider the example of a simple two-step machining
process (Fig. 1). The workpiece is a cube of metal (only
front view is shown). Surface C of the workpiece is milled
in the first step (Fig. 1a). In the second step, a hole is drilled
on surface D (Fig. 1b) while the workpiece is located in the
fixture through the left and bottom surfaces. Clearly, the
resulting hole is not perpendicular to surface D (Fig. Ic) due
to the fixture error. The fixture error could be a mean shift
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of the locating pin height due to an error in setup or a
variance increase of the locating pin height due to the
loosening of the pin. In most cases, the fixed mean-shift
error can be easily handled by compensation even without
knowing the error sources. For example, if the drilled hole
always deviated from 90° by a fixed value, the angle be-
tween the drill and the fixture can be adjusted to compensate
for this deviation without removing the fixture error. The
error of variation increase is much more difficult to remove.
The sources of this variation increase, so-called “variation
sources” in this paper, often need to be identified before
being eliminated. One point needing to be clarified here is
that there are many sources in a process to cause variation.
However, only those sources that cause excessive variation
are defined as “variation sources” in this paper. Therefore,
variation sources are also called “process fault” in this
paper. It might be easy to figure out the variation source for
a simple two-step manufacturing process. However, for a
large complex manufacturing system, it will be very time-
consuming and expensive to inspect every stage of the
manufacturing system until we eventually locate the varia-
tion source whenever an abnormal working condition is
detected.

Statistical process control (SPC) [29] is a popular tech-
nique used in practice for quality improvement. SPC tech-
nique can be used to detect the quality change. After a
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Figure 1. Effect of fixture error on product dimensional quality.
[Color figure can be viewed in the online issue, which is available
at www.interscience.wiley.com.]

process change is detected, it is critical to quickly determine
the variation sources so that they can be eliminated and the
process can be brought back to its normal condition. How-
ever, SPC possesses limited diagnosis capabilities to iden-
tify the variation sources—the diagnosis of malfunctioning
tooling elements is often left to human operators. The vari-
ation source identification has been identified as an impor-
tant research direction in SPC [36].

Due to the fast development of information and sensing
technology, massive information regarding the manufactur-
ing process (e.g., product design, process planning, in-
process sensing information of process status, product qual-
ity information) is now readily available. The 100% inspec-
tion for discrete processes and very high sampling rate for
continuous processes are not rare in practice now. For
example, in the autobody assembly process, 100% dimen-
sional inspection has been achieved through in-line optical
coordinate measurement machines [9]. This huge amount of
process/product information provides great opportunities to
develop variation source identification methodologies.

Recent research has advanced toward this direction. The
reported variation source diagnosis methods can be put into
two categories: (1) diagnosis based on known physical
models linking product quality measurements to process
variation sources and (2) diagnosis only based on the prod-
uct quality measurements.

Linear fault-quality models have been developed for par-
ticular processes based on the specific physical process
knowledge. Jin and Shi [23], Mantripragada and Whitney
[28], Ding, Ceglarek, and Shi [14], and Camelio, Hu, and
Ceglarek [8] developed models that link the variation
sources such as the fixture error with the product quality
measurements for multistage assembly processes. Huang,
Zhou, and Shi [22], Djurdjanovic and Ni [18], and Zhou,
Huang, and Shi [39] provided linear fault-quality diagnostic
models for multistage machining processes. Barton and
Gonzalez-Barreto [6] proposed a process-oriented basis rep-
resentation for multivariate process diagnostics.

These linear physical models can be put in the generic
form

y = Af + ¢, (D
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where y is an n by 1 vector consisting of product quality
measurements (7 is the dimension of the quality measure-
ments), A is a constant coefficient matrix determined by
process/product design, f is a vector representing the pro-
cess variation sources (also called process faults), and &
includes the measurement noise and un-modeled variation.

The variation source diagnostic methods based on phys-
ical models can be classified as the pattern matching method
and the direct estimation method. The pattern matching
method is based on the fact that if only one fault happens
(only one nonzero component in f) and the covariance of &
is in the form of oI, I is the identity matrix, the eigenvector
associated with the largest eigenvalue of the covariance
matrix of y is the same as the column of A that corresponds
to the nonzero component of f. This method was first
proposed by Ceglarek and Shi [10] to identify fixture error
in a rigid assembly process. Rong, Ceglarek, and Shi [31]
extended this method to compliant assembly process. Ding,
Ceglarek, and Shi [15] further relaxed the constraint on the
covariance of € and provided a boundary of the eigenvector
when the covariance of € is of general structure. The limi-
tation of this method is obvious: this method is only for
single fault identification. There are two typical methods in
direct estimation category: (i) least squares estimation
method. In this method, f is first estimated using least
squares method [3, 11]. Then, based on the estimation
results f, the variance of f is estimated and a hypothesis
testing procedure is setup to identify the variation sources
[3]. This method can handle the identification of multiple
variation sources. A diagnosability study for this method is
conducted by Ding, Shi, and Ceglarek [16]. (ii) Variance
component analysis method. This method is based on the
fact that Model (1) is actually a linear mixed model. The
variation estimation methods such as Maximum Likelihood,
Restricted Maximum Likelihood, and Minimum Norm Qua-
dratic Unbiased Estimation (MINQUE) can be used to iden-
tify the variation sources. Different estimation methods are
compared in [17]. A diagnosability study for this method is
conducted by Zhou et al. [38]. A hypothesis testing proce-
dure is developed and experimentally validated by Zhou,
Chen, and Shi [37]. This method can also handle the iden-
tification of multiple variation sources.

The above-mentioned variation source identification
methods are based on a physical fault-quality model. The
physics of the process need to be thoroughly studied to build
up the process model. For a large-scale system, it will be
very difficult, if not impossible, to build up such a compre-
hensive physical model [12]. Limited research has been
done on the variation source identification without knowing
the process fault-quality model. Apley and Shi [4] presented
a statistical technique for estimating the coefficient matrix A
in Model (1) only based on the quality measurements. A
ragged lower triangular form is assumed for A to remove
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the indeterminacy in the estimation. The columns of A are
called “fault geometry vectors.” The physical interpreta-
tions of the faults are pursued after A is estimated. There-
fore, this method is more of a descriptive method for ex-
tracting and interpreting the information from the quality
data. Most recently, Apley and Lee [5] proposed a blind
separation approach to identify spatial variation patterns in
manufacturing data. Their method focuses on separating the
simultaneous variation sources in the present system and
does not deal with the variation source identification issue.
In other words, their method does not discuss the variation
pattern matching issue.

In this article, we proposed a variation source identifica-
tion technique that does not require any priori information
on A matrix in the process fault-quality model and the
developed model can be further utilized for fault diagnosis.
This method first estimates the column vectors of A matrix
using a gradually learning procedure. These columns can be
viewed as signatures of corresponding variation sources. A
library of the estimates of the column vectors can be built.
Then, the variation source identification can be realized by
decomposing and comparing the eigenspaces of the covari-
ance matrix of the quality measurement according to this
library.

This paper is structured as follows. In Section 2, the
problem formulation and the method of variation source
identification are presented. A complete procedure is devel-
oped to quickly identify the process variation sources. A
case study is illustrated in Section 3 to demonstrate the
effectiveness of this technique. Conclusions are presented in
Section 4.

2. VARIATION SOURCE IDENTIFICATION
USING COMMON EIGENSPACE

2.1. Problem Formulation

In this paper, we adopt the linear relationship between the
process faults and product quality, as shown in (1). In
general, the impact of the process fault on the product
quality is nonlinear, which is represented by a general
function g(-) in (2),

y =g+ e, 2

where y is the quality measurements (e.g., the dimensional
measurements of a workpiece), f represents the process
variation sources (e.g., the locations of the pins of the
fixture), and € is the measurement noise. Although the
relationship between y and f is in general nonlinear, a linear
relationship can provide a fairly good approximation be-
cause the process faults are often small in magnitude. This

linear approximation can be obtained through Taylor series
expansion around the nominal value of f; as

de(f
y =~ g(fo)-l-% Af+ €. 3)

f=fy

If f is £, then no process fault happens and g(f,,) is the
nominal quality measurement value, which is denoted y,,. If

ag(h)
we denote Ay as y—y,, %f:fo as A, then
Ay = A-Af + &. 4)

Without causing confusion, € in Eq. (4) includes both
measurement noise and linearization error. The linear fault
quality model as in (1) can be obtained by replacing Ay by
y and Af by f. In this article, the following assumptions are
made on Model (1) or (4):

(1) A is an unknown n by p matrix. The columns of A
are linearly independent.

(2) fis a p by 1 vector that follows a multivariate
normal distribution N(0, D), where D is a diagonal
matrix. The components of f are assumed indepen-
dent because the process faults are often indepen-
dent of each other. In this article, we focus on the
fault of variation increase as opposed to mean
shift. Hence, we further assume f has zero mean.

(3) € is a n by 1 vector that follows a multivariate
normal distribution N(0, cer), where ¢~ is a scalar
and I is the identity matrix. Further, € is indepen-
dent with f. Because the measurement noise is
dominating in &, this assumption is reasonable if
the same measurement device is used to measure
all the quality characteristics. This is not rare in
practice. For example, the Coordinate Measure-
ment Machine is often used in practice to measure
all the dimensions of a workpiece.

This model is similar to the factor analysis model that is
widely used in psychometrics [1]. In the conventional factor
analysis model, the covariance matrix of € is assumed to be
diagonal, not in the form of o°1, and the covariance matrix
of f is assumed to be identity, not only a diagonal matrix. In
this model, each fault is associated with the corresponding
column vector of A. In [4], this column vector is called
“fault geometry vector.” We will use the same terminology
here. The magnitude of a variation source is captured by the
variance of corresponding elements of f, i.e., the corre-
sponding diagonal element of D.

Based on this linear model, the problem of variation
source identification can be formulated as follows: Given
multiple observations of y, how to identify which faults
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happen? What are the magnitudes?, i.e., how to identify
which fault geometry vectors exist in A and what is the
variance of f?

One thing that needs to be pointed out is that during the
sampling period, not all potential process faults happen
simultaneously. Assume there are m potential process vari-
ation sources in total. It is unreasonable to assume that the
m process faults always happen simultaneously. Therefore,
we have to allow the number of components of f vector and
the number of columns of A to be changeable from sample
to sample.

2.2. Estimation of the Fault Geometry Vector

Because A in (1) is assumed unknown, we need to obtain
the fault geometry vectors first.

First, since D is a diagonal covariance matrix of f, D'?
and D2 are diagonal and real. Hence, the variable trans-
formation f = D'?f* and A = A*D ™2 can be substituted
into (1) to get

y = A*f* + g, ®))

where f* = D™ 2f and A* = AD"2. The covariance of f*,
3. is an identity matrix because Zp = D~ VDDA
=D 2pp 12 = .

A close look at (5) reveals that it is exactly the model
used in probabilistic principal component analysis [34]. It
has been shown by Tipping and Bishop [34] that the max-
imum likelihood estimation of A* is given as

A?I\iIL = Up(Fp - O%/ILI)UZR‘ (6)

In the above equation, I, is a p by p diagonal matrix with
diagonal elements of )\1~)\p, where A;’s (i = 1, ..., n,
Ay = Ay, = -+ - = A,) are the eigenvalues of Sy, the sample
covariance matrix of y. U, is a n by p matrix consisting of
the p eigenvectors that are associated with A;~A,. oy is
the maximum likelihood estimation of ¢” and is given by

1
oy, = —— 2\, A, where ¢” is the variance of the
n=p

measurement noise. Matrix R is an arbitrary p by p orthog-
onal matrix. Clearly, the estimation of A* is not unique. It
possesses rotational indeterminacy. Based on the result in
(6), we can get the corresponding estimation result for A,

A, D" =U,T, — 03, 1)'"R, (7

where D is the covariance matrix of f, representing the
magnitude of the process faults. If multiple faults happen
simultaneously (i.e., p > 1), Eq. (7) can only provide
limited information of A,,, because of the rotational inde-

Naval Research Logistics DOI 10.1002/nav

terminacy. However, the rotational indeterminacy does not
exist if only one fault happens (i.e., p = 1). In this case,
R = 1 is a scalar, Fp = A, is a scalar, Up is the eigenvector
v, that is associated with the largest eigenvalue, D2 is a
scalar, and A,,; is the maximum likelihood estimation of the
geometry vector (a,) of the current fault. Clearly, if only one
fault exists, the direction of the fault geometry vector is
uniquely determined by the direction of v,. However, the
indeterminacy of the scale of a, still exists: we cannot
uniquely identify the length of a, and the magnitude (D) of
the fault. This indeterminacy can be easily removed by
putting a constraint on the length of a. In this paper, we
assume [[af| = 1, where ||| is the Euclidean norm. With this
constraint, we have

a;=v, and 0} =\ — oy, (8)

where @, and 6]% are the estimates of the geometry vector
and the magnitude (variance) of current single fault, respec-
tively.

Because Eq. (8) can uniquely identify the fault geometry
vector and the fault magnitude, it sheds light on the fault
identification without knowing the coefficient matrix A.
First, based on Eq. (8), we can estimate the fault geometry
vector when a single fault happens. Then fault geometry
vectors can be collected to form a library. Finally, the fault
diagnosis can be achieved through a matching between
current variation patterns and the fault geometry vectors in
the library. The detailed procedure is listed in the following
section.

2.3. The Procedure for Data-Driven Variation
Source Identification

The steps of the variation source identification are listed
as follows and summarized in Fig. 2.

S1: The multivariate product quality measurements are
obtained in the data collection step. The sample size
is assumed to be N and the dimension of the mea-
surement is n.

S2: Based on the quality measurement, we can calculate
the sample covariance matrix. From this covariance
matrix, the number of significant variation sources
can be estimated and tested. The testing procedure
will be discussed in Section 2.4.1.

S3: From Step 2, if only one variation source exists in
the system, then the eigenvector associated with the
largest eigenvalue of Sy is an estimate of the fault
geometry vector associated with current variation
source. If there are already some fault geometry
vectors in the library, then we need to test if the
current fault geometry vector is the same as one of
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Figure 2. The procedure of variation source identification.

them (the testing procedure will be discussed in
Section 2.4.2). If yes, we can determine that the
current fault is the same as some previous fault.
From Step 3, if the current fault is different from any
previous fault, we need to inspect the process and
locate the physical root cause of the new fault. If the
new fault is located, we will put the eigenvector
associated with the largest eigenvalue of S, into the
library as the fault geometry vector of the new fault.
If the new fault cannot be located, we will only
generate an exception alarm and will not put the
eigenvector into the library. This step is very critical
to guarantee that each fault geometry vector in the
library is corresponding to a real variation source. In
practice, the eigenvector should not be put into the
library if the physical root cause of the correspond-
ing new fault is not identified.

From Step 2, if p (p > 1) faults exist in the system,
we can use the fault geometry vectors to identify
which faults have happened. First we can randomly
select p fault geometry vectors in the fault geometry
library. If the total number of fault geometry vectors
in the current library is smaller than p, then we can
only say that some unknown faults have happened.
We determine which process faults exist in the cur-
rent case by matching the p selected fault geometry
vectors and the current variation patterns (the details
are presented in Section 2.4.2). If there is a match,
the same faults associated with the selected fault
geometry vectors have happened. If no, we can se-
lect another set of fault geometry vectors from the
library and check it again. If all the potential com-
binations of fault geometry vectors have been tested
and no one spans the same space as current signifi-

cant eigenvectors, we cannot identify the individual
faults in this case and can only claim some unknown
faults happened.

S7: After the variation sources have been identified, we
can further estimate the variation magnitude of the
process faults. One straightforward method is based
on the equation X, = ADA” + ¢?L It can be
rearranged as ADA% =3, - o’1. After left mul-
tiplying A" and right multiplying A on both sides of
the equation, we have ATADA'A = A’(X, —
a’D)A. Assuming ATA is invertible and estimating
2, A with S and Ay, respectively (Ayy is the
maximal likelihood estimator of A), then D can be
obtained as

D= (AI{/ILAML)ilAAT/IL(Sy - 0'12\4LI)AML(AAT/1LAML)71'
9)

In this variation source identification procedure, two im-
portant testing procedures are required: (1) the number of
significant eigenvalues of a covariance matrix (i.e., the
number of faults in the system) and (2) determination of
current faults based on the selected fault geometry vectors.
The testing methods are discussed in Section 2.4.

REMARKS:

e It is common that only one fault happens in the
manufacturing process [10, 15, 31]. In this paper, we
will only store the fault geometry vector into the
library only when one fault happens in the system.
After a short learning period, the library that is
accumulated from only single fault cases will be
sufficient for future fault detection.

Naval Research Logistics DOI 10.1002/nav
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e The proposed procedure also requires process in-
spection before a fault geometry vector can be added
to the library. Process inspection is very important in
the proposed variation source identification proce-
dure because the whole procedure is built up on
statistical testing results. Due to the inherent uncer-
tainty of statistical tests, there will always be errors
in the conclusions of the statistical tests. We could
have a false alarm or miss a detection in the statis-
tical tests. These errors are inherent: we can only try
to reduce them by increasing the sample size or
developing more efficient test statistics, but we can
never eliminate them. Thus, the process inspection is
a necessary step in the procedure to eliminate the
influence of statistical testing error. For example, we
can depend on process inspection for decision mak-
ing when a multiple match occurs; i.e., if multiple
matches are found, process inspection is needed to
make the final decision on which faults have oc-
curred. In practice, we also need process inspection
to identify the physical mechanism of the new fault
and then eliminate it. After all, it is meaningless to
store a fault geometry vector of an unknown fault
into the library. One point that needs to be empha-
sized is that the proposed procedure only needs process
inspection when a new fault (that has not occurred
before) occurs. Compared with traditional process con-
trol techniques such as SPC, in which process inspec-
tion is needed for every fault, the process inspection
efforts are significantly reduced.

e In this variation source identification procedure, we
do not put the fault geometry vectors from multiple
fault case in the library due to their rotational inde-
terminacy. According to Eq. (7), when multiple
faults occur, the estimated fault geometry vector
could be of an arbitrary rotation within the linear
space spanned by the corresponding multiple col-
umn vectors of A matrix. It cannot be utilized for
fault diagnosis.

2.4. Testing Procedures Used in Variation Source
Identification

2.4.1. Estimation of the Number of Faults

Different methods to solve this problem have been stud-
ied and compared through simulation by Apley and Shi [4].
This problem can be formulized as a hypothesis testing
problem. Denote S, as the sample covariance matrix of the
n-dimensional quality measurements. Then, to determine
whether p faults exist in the system, we can test the hypoth-
esisthat \; = A, == A, = 0" = A, ==\,
where A, i = 1 --- n, are the eigenvalues of Ey. Several
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asymptotical testing procedures are available. In [4], the
authors recommended the Akaike (AIC) and minimum de-
scription length (MDL) information criteria to estimate the
number of fault. The AIC and MDL criteria are given as

AIC(l) = N(n — Dlog(a/g) +12n — 1) (10)
and
MDL(l) = N(n — I)log(a/g,) + I2n — Dlog(N)/2, (11)

where N is the sample size, n is the dimension of the quality
measurement, @, and g, are the arithmetic mean and the
geometric mean of the n — [ smallest eigenvalues of S,
respectively. To use this criteria, AIC(/) and MDL(l) are
evaluated for / = 0 - - - n — 1. The estimated fault number
p 1is chosen as the [ that minimizes AIC(/) or MDL(l),
respectively. In this paper, we select MDL criterion to
identify the number of faults.

2.4.2. Variation Source Identification Based on
Matching of Fault Geometry Vectors

The variation source identification problem in Steps 3 and
5 can be formulated as follows. Consider the ith sample of
quality measurements with sample size N and dimension of
measurement n. The n by n sample covariance is denoted
S;. We assume p (p = 1 and p is less than the total number
of potential faults in the system) faults exist in the process
during this sampling period. The underlying process model
during this period is denoted y = Af;, + €. Clearly, the
existing variation sources during this period are manifested
by the columns of A,.

Without loss of generality, we can assume p (p = 1)
fault geometry vectors, denoted {a,, a,, ..., :'ip}, are
selected from the library in Step 4. These vectors are the
estimates of the true fault geometry vectors, denoted {a,,
a, ..., a,}. The matching of geometry vectors is actually
to test if A, contains the same columns as {a,, a,, ..., ap}
regardless of the sequence of the columns (e.g., A; =
[a, a,] and A, = [a, a,] are considered to have the
same columns). If the test result is yes, then we can claim
the same faults associated with {a,, a,, ..., a,} happened
during the ith sampling period.

To conduct the test, one useful fact is that both the
columns of A; and {a,, a,, ..., a,,} are subsets of the
complete geometry vector set. Because the geometry vec-
tors are assumed independent of each other, A; containing
the same columns as {a;, a,, ..., ap} is equivalent to
RA,) = R([a, a, a,]), where R(:) is the range
space of a matrix. Furthermore, it is known that for the
model y = Af; + &, the p eigenvectors of % that associ-
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ated the p largest eigenvalues span the same space as R(A,)
if the covariance of f; is a diagonal matrix and covariance of
€ is in the form of ¢°I [4, 24]. Therefore, the testing if A,
containing the same columns as {a;, a,, ..., a,} is equiv-
alent to test if R([a, a, al) = R(vy v -V,
where v, v,, ..., v, are the p eigenvectors of Ey associated
with the p largest eigenvalues.

In practice, both the true fault geometry vectors {a,, a,, . . .,
a,} and the population eigenvectors {v, Vv, v,} are
unknown. A statistical testing procedure using the estimates
{a,,a,,...,4a,} and the eigenvectors of the sample covariance
matrix S; need to be developed. Although not the same, the
current testing problem is related to the statistical testing of
common eigenspace, which is formulated as follows.

Given two n by n population covariance matrices 3, and
3, and their samples S, and S,, we assume the eigenvalue/
eigenvector pairs of %, and 2, are (A;, V), (A1, Vi5) - - -
A Vinds Ajp = Ay = 200 = Ay, and (Mg, Vay), (Mg,
Vao)s ooos (Agps Vau)s Ay = Ay = -0 = Ay, respec-
tively. The testing of common eigenspace is to test if the
eigenvectors of 3, and 3, associated with first p largest
eigenvalues span the same subspace, i.e., to test if R(L) =
RM), where L = [v,; vV, vi,] and M =
[Vo; Voo V,,]. Several techniques have been de-
veloped for this testing problem [7, 19, 32, 33]. These
testing procedures are generic and powerful. To conduct
these tests, a sample from each of the two populations is
required. However, in the variation source identification
problem, the sample from the first population is not always
available, particularly for the multiple faults case. Instead,
only an estimate of the columns of the coefficient matrix

{a,, a,, ..., a,} is available. Although we might artifi-
cially generate a sample covariance from the selected {2a,,
4,,..., a,} and the estimated measurement noise, the

impact of this operation on the available testing procedures
is not clear. Some authors developed analytical procedure
for testing if certain eigenvectors of a covariance matrix
span a subspace of the range space of a known matrix [2, 13,
35]. However, in our problem, the true values of fault
geometry vectors are unknown. Therefore, those techniques
cannot be directly applied in our case.

In this paper, we use an intuitive test statistics that can be
easily accepted by practitioners. The basic idea is to use the
angle between two subspaces as a measurement of the close-
ness of two subspaces. A similar test statistic has also been
adopted by Krzanowski [25, 26]. The following proposition
gives the definition and the calculation method of this angle.

PROPOSITION: Given an arbitrary vector v € R(L), then
the largest angle between v and its closest vector in (M),
where L and M are sets of p orthonormal bases, is given by
cos '(V/A,), A, is the smallest eigenvalue of L'MM'L.

PROOF: The proof is similar to the proof of theorem 1 in
[25]. A vector of arbitrary direction in R(L) can be ex-
pressed as b = L - a, where a is an arbitrary unit vector.
The closest vector to b in (M) is its projection onto R(M),
i.e., MM’b. Therefore, the angle between these two are
cos’0 = b'MM’b = a’L"MM’La. Since L'MM'L is
symmetric, the smallest cos®6 (i.e., the largest ) is given by
the smallest eigenvalue of L”MM’L [21]. This proves the
result. O

Based on this proposition, this largest angle can be used
to represent the difference between the subspaces spanned
by {a,, a,, ..., ﬁp} and the first p eigenvectors of S;. The
major advantage of this test statistic is that it is computa-
tionally simple and possesses clear geometric explanation.
Practioners can easily visualize this test statistic and link it
with physical explanations. The disadvantage of this test
statistic is that the analytical information about the sampling
behavior of this statistic is absent. Hence, no analytical
expressions for critical values of this statistical testing are
available. However, similar to Krzanowski [26], the Monte
Carlo simulation method can be used to provide approxi-
mations of the critical values of this test.

Sample uncertainties exist in both the selected geometry
vectors from the library {a,, 4,, ..., &,} and the eigen-
vectors of S;. In the simulation, we use two loops to
simulate and characterize the sample uncertainties. The
inner loop starts with a fixed set of fault geometry vectors
{a,, a,, ..., ﬁp}. For this set of vector, replications of S,
under the null case (i.e., the same p faults associated with
the current {4, 4,, ..., &,} happen in the process when S;
is simulated) are generated and the angle between the cur-
rent {4, 4,, ..., 4,} and the first p eigenvectors of §; is
calculated. If a sufficient number of replications is pro-
duced, the main features of the sampling distribution of the
angle under given simulation conditions can be captured.
The percentile values (such as 90, 95, and 99% points) of
the sample distribution of the angle are then obtained.
Clearly, these percentile values are obtained conditioning
on a fixed set of {4, a,, ..., ﬁp}. In the outer loop,
replications of the fault geometry vectors {&,, a,, ..., a,}
are simulated (the vector a; is actually the eigenvector
associated with the largest eigenvalue of S, when only the
ith fault exists in the system). For each replicate of {a,,
a,,..., a,}, percentile values of the angle are obtained
from the inner loop. The final percentile values of the
sample distribution of the angle are obtained by averaging
the percentile values associated with the replicates of {a,,

4y, ..., a,}. For example, if denote 6gysq, ; is the 95th
percentile value of the angle for the ith replicate of {a,,
a,, ..., 4,}, then the final 95th percentile value of the angle

is taken as Oysq, = 1T]4 2N Bosq.i» Where M is the total number
of replications of {4, &5, ..., &,} in the simulation.
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In the simulation, the selection of A is a difficult problem
because the choices and settings of the coefficient matrix A,
and hence the population covariance matrix X, are infinite.
However, because we can always transform % into a diag-
onal form through a linear variable transformation, %, can
simply put in a diagonal form with decreasing diagonal
elements. Krzanowski [26] adopts the same simplification
in his simulation.

With this simplification, the parameters required in the
simulation are the sample size N, dimension of the mea-
surement n, number of the fault p, and the diagonal ele-
ments of Ey. Without loss of generality, we assume the n

diagonal elements of 3 are given by {02, 03, ..., 02

o?, ..., o2}. It has been pointed out by some authors [5,
19] that if the ratio between 0']2, and oﬁ is small, the asso-
ciated eigenvectors of the sample covariance matrix are not
stable. Considering this fact, we take Uﬁ/ crﬁ as a parameter
and call it the “variation ratio (VR)” of the fault in the
simulation. When this ratio is large, the contrast between the
process fault and the measurement noise is large. Hence, we
should expect good diagnostic accuracy. On the other hand,
when this ratio is small, the process fault is “blurred” by the
measurement noise and the diagnosis accuracy will be de-
teriorated. In practice, because the variance of measurement
noise (07) can be obtained through a gauge capability anal-
ysis and 0; can be viewed as “tolerance” level on the
variation sources that are often specified by design require-
ments (i.e., the minimum variation level of a variation
source to be treated as significant), the boundaries of the VR
ratio can often be obtained. Besides the VR ratio, it is also
pointed out by Krzanowski [26] that the ratio between o7}
and the trace of % will also impact on the sample uncer-
tainty of the eigenvectors. In this paper, we denote C =
o‘%/tr(f,y). When only one fault happens (p = 1), C is
automatically determined by our definition of o7 = VR X
. 7

O‘i since C = m .
excluded in the single fault case. When multiple faults
happen (p = 2), we will include the C parameter to show
how C will impact the critical angle. We will present three
cases (C = 75, 50, and 33%) in this paper.

In summary, the selected parameters for the simulation
include N, n, p, VR, aﬁ, and C (when p = 2). For each
loop, 1000 replicates are generated. The results are summa-
rized in the Appendix. 6 and o, are the mean and standard
deviation of the angle, respectively. The last three columns
present the 90, 95, and 99% points of this angle. In the
simulation, the values of the parameters are selected for
some typical engineering applications. For parameter values
that are not provided in the tables, a similar simulation can
be easily conducted to estimate the corresponding critical val-
ues. From the results listed in the Appendix and some further
simulations, the following observations can be made.

Thus the C parameter is
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(1) Not surprisingly, the sample size (N) and the VR
ratio (af/oﬁ) impact the angle significantly. Our sim-
ulation results showed that this method worked well
when the sample size is at least 50 and the VR ratio
is greater than 50. This VR ratio is in a reasonable
range, which can be justified as follows. According
to Montgomery [30], a P/T (precision to tolerance)
ratio of 0.1 or less often is adequate gage capability.
For common process capability ratio (PCR) C,, = 1,
a typical process will have o,/o, = 10, which cor-
responds to VR = 100.

(2) Another significant factor impacting the angle is
the number of faults in the system. A large number
of variation sources in the system will increase this
angle and hence reduce the accuracy of this iden-
tification method. Therefore, we need to be cau-
tious when the number of faults in the system is
large. However, it is worth noting that this is not a
serious limitation of this method in practice be-
cause even the system has quite a few potential
faults; the number of faults that happen simulta-
neously is often limited.

(3) The increase of the quality measurement (n) will
usually lead to a larger critical angle. The magni-
tude of the noise (02) also influences this angle.
However, the influence seems insignificant.

(4) The parameter C did not show significant impact
under normal engineering assumptions (N = 50
and VR = 50). This effect is slightly larger when
N is close to 50 and p = 2. However, the maximal
variation of the critical angle caused by C is still
less than 2 degrees, which can be ignored in many
cases in practice. The impact of C will be “diluted”
as p increases.

2.5. False Alarm Rate of the Proposed Variation
Source Identification Procedure

For the proposed procedure in Section 2.4, we will study
the false alarm rate for the following two cases: (a) when
there is no fault in the system, our procedure finds at least
one fault; (b) when there is one fault in the system, we
incorrectly identify it as a different fault.

In case (a), the false alarm rate is the probability that our
method will falsely claim that at least one fault occurred
when the system is actually under normal working condi-
tions (no fault occurred). In this case, the false alarm rate is
determined by the MDL test. If the MDL test falsely iden-
tified a fault that actually does not exist, then this is a false
alarm. Monte Carlo simulation is used to evaluate the false
alarm rate. We used the linear model y = Af + € to
generate the sample covariance matrices and use MDL test
to estimate the number of faults in the system. A typical
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Table 1. False alarm rate for the fault identification procedure.

Type 1 Type 1
N n VR error N n VR error
50 10 50 0.1016 100 10 50 0.1163
100 0.0503 100 0.0552
150 0.0207 150 0.0221
200 0.0132 200 0.0127
20 50 0.1419 20 50 0.1804
100 0.0635 100 0.0673
150 0.0244 150 0.0275
200 0.0102 200 0.008
30 50 0.188 30 50 0.2489
100 0.0658 100 0.0783
150 0.0246 150 0.0285
200 0.0089 200 0.0064

parameter setting in practice is selected in the simulation:
the maximal number of faults in the system is five faults; the
dimension of y is 10; the variance of the noise is oﬁ =0.01%,
and all the eigenvalues of 3 are equal to 0.005% which
corresponds to the situation when no fault occurred in the
system. Without loss of generality, we also assume that all
the columns of matrix A are orthogonal to each other. In
total, 10,000 cases are simulated. For sample size N = 50,
the false alarm rate is very small (0.0005), indicating that
the MDL test is quite effective in fault detection.

In case (b), we already know there is one fault in the
system from which the new sample is collected. The false
alarm rate is the probability of incorrectly identifying the
fault type. The overall false alarm rate of the diagnosis
includes both the errors in the MDL tests (the probability
that we falsely estimate the total number of faults in the
system) and the errors in the hypothesis testing for fault
geometry vector matching (the probability that we did not
correctly identify the fault when the fault actually occurred).
It is very difficult to obtain analytical results of the overall
false alarm rate. To demonstrate the effectiveness of the
proposed procedure, Monte Carlo simulation is used again.
We also include the VR ratio in the simulation. For the sake
of simplification, we also assume that all the sample covari-
ance matrices and the fault signature matrices share the

(a) Workpiece

(b) Fixture System

sample size N and VR in each case. However, this is not a
limitation of the testing procedure. In total, 10,000 cases are
simulated. In each case, two samples for the same fault will
be generated. One sample will be treated as the fault geom-
etry vector while the other one will be treated as the new
sample to be identified. If the testing procedure cannot
correctly estimate the number of faults in either one of these
two samples, it will be marked as an error case. If the testing
procedure estimates an angle that is greater than the corre-
sponding 99% critical angle given in the Appendix, it will
also be marked as an error case. The false alarm rate for the
whole testing procedure is calculated by the total number of
error cases divided by 10,000. The false alarm rate for the
whole fault identification procedure is presented in Table 1.

REMARKS:

e A larger fault magnitude (represented by VR given
in Table 1) generally will have a smaller false alarm
rate in the fault diagnosis. This is reasonable since
larger VR value tends to make the variation sources
stand out from the noises.

e As the dimension of quality measurements n in-
creases, the false alarm rate increases as well when
VR value is not extremely large.

It should be pointed out that it is unsafe to draw very
general conclusions from one simulation case. However,
because the simulation is a typical case in practice, it is
reasonable to conclude that the proposed method is an
effective method in many engineering applications.

The procedure of variation source identification is pre-
sented in this section. A case study is presented in the next
section to demonstrate the application of this procedure and
its effectiveness.

3. CASE STUDY
3.1. Introduction to the Process

In this case study, a machining process is adopted to
illustrate the effectiveness of this method. To machine a
workpiece, we need first to locate the workpiece in a fixture

(c) Mahinng Operation

Figure 3. Illustration of a machining process. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]
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Figure 4. A typical 3-2-1 fixturing configuration. [Color figure
can be viewed in the online issue, which is available at www.
interscience.wiley.com.]

system and then mount the fixture system on the working
table of the machining center. The position of the cutting
tool during cutting is calibrated with respect to the working
table. This procedure is shown in Fig. 3.

In Fig. 3, the workpiece is an automotive engine component,
the fixture system is of 3-2-1 configuration, and the machine
tool is a vertical machining center (only the cutting tool and the
working table of this machining center are shown in Fig. 3).
The 3-2-1 fixturing setup is widely used in practice, in which
there are 3 + 2 + 1 = 6 locating pins. The position and
orientation of the workpiece are fixed in space with respect to
the fixture if the workpiece touches these six pins.

Figure 4 illustrates a typical 3-2-1 fixturing system.
L,~L; and P,~P; represent the six locating pins. By re-
quiring surface ABCD in Fig. 4 to touch L,~L,, the trans-
lational motion in the Z direction and the rotational motion
in the X and Y directions are restrained. Similarly, surface
ADHE constrains the translational motion in the X direction
and the rotational motion in the Z direction by touching P,
and P,. Surface DCGH constrains the translational motion

—0.1968 —0.2352 —0.0971 0.0249
A= 0.3933 0.2432 0.0894 — 0.0463
0.2154 0.3947 0.3946 0.3945

0.4775 0.3708

— 0.0985 0.0427

—0.0256 — 0.0464

Please note that the columns of A have been normalized.
This model is validated in [39] and has been utilized for
process fault identification in [37].

In this case study, however, this model is assumed un-
known. Instead, we use this model to generate different
cases to simulate the machining operation. The proposed
variation source identification procedure is applied to these
generated cases to illustrate its effectiveness.
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0.1879
—0.2277
0.3943

in the Y direction by touching P5. Therefore, all six degrees
of freedom associated with the workpiece are constrained
by these three surfaces and the corresponding locating pins.

The cutting tool path is calibrated with respect to the
machine coordinate system XYZ. Clearly, an error in the
position of locating pins will cause a geometric error in the
machined feature. Suppose that we mill a slot on surface
EFGH in Fig. 4. If L, is higher than its nominal position, the
workpiece will be tilted with respect to XYZ. However, the
cutting tool path is still determined with respect to XYZ.
Hence, the bottom surface of the finished slot will not be
parallel to the surface (ABCD). By measuring the position
and orientation of the resulting surface with respect to
surface ABCD, the faulty locating pin can be identified.
Further, the magnitude of the fault can be estimated.

For the sake of simplicity, we only consider the identifica-
tion of locating pin faults of a simple machining operation in
this case study. The machining operation is illustrated in Fig.
3c. In this operation, the cover face of the engine component is
milled. The quality measurements for this operation are the
deviations of 15 points on the cover face from their nominal
values. The relationship between the quality measurements and
the errors in the locating pins can be described by y = Af + €.
In this model, y is a 15 by 1 vector that includes the measure-
ment of 15 points. The unit of y is millimeter. f is a 3 by 1
vector that represents the error in three locating pins. The
reason that only three locating pin is included in f is that only
three locating pins will influence the accuracy of the resulting
surface in this simple operation. € is a 15 by 1 vector that
represents the measurement noise. Coordinate measurement
machine is the most common device in practice. Based on the
normal accuracy of CMM, we select o, = 0.01 mm. The
process normal variation o2 is around 0.05% mm?. Further-
more, for this particular cover face machining operation, A can
be obtained as

0.3117 0.3607 0.4322
—0.3655 —0.2804 —0.1715
0.3942 0.2699 0.0891
0.2329 0.1240 0.0193 —0.0299 —0.10117"
0.1866 0.3079 0.4243 0.3325 0.2178 ] .
—0.0374 —0.0373 —0.0372 0.0991 0.2795
T

3.2. Application of the Variation Source
Identification Technique

To demonstrate the proposed variation source identifica-
tion technique, the following cases in Table 2 are consid-
ered. In each case, the sample size N = 50, the dimension
of the quality measurement n = 15, and o, = 0.01. In
Table 2, Ty, Oy and oy, are the standard deviation of f(1),
f(2), and f(3), respectively. From this data, we can see that
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Table 2. Different cases considered.

Case
no. 1 2 3 4 5 6 7 8

o, 0.005 0.08 0.005 0.005 0.005 0.09 0.005 0.1
o, 0.005 0.005 0.1 0.08 0.1 0.08 0.005 0.005
oy 0.005 0.005 0.005 0.005 0.11 0.005 0.1 0.08

in case 1, all the standard deviations are quite small. Hence,
case 1 represents the normal condition without fixture error.
This result is confirmed by MDL test results later in Table
4. The rest of the cases represent different faulty conditions.

Table 3 shows the eigenvalues of Sy for each case and

Table 4 lists the MDL test results (MDL(Z), [ = 0, 1,
5) for cases 1-8. The [ that minimizes MDL for each case
is the estimated result of the number of significant variation
sources. The result is listed in the last row. It can be seen
that the number of significant variation sources is correctly
identified for each case.

Based on the number of faults identified, the associated
eigenvectors for each case are listed in Table 5. If p (p = 1, 2)
significant variation sources exist in the system, then p eigen-
vectors associated with the first p largest eigenvalues are listed.

Since no previously identified fault geometry vector is avail-
able, in Case 2 we put the eigenvector (v,) that is associated
with the largest eigenvalue into the fault geometry library and
denote it ¥,. Please note that ¥, is similar to the first column of
A. The magnitude of the variation can also be estimated by
substituting A by ¥, in (9). The estimated /D is 0.0714, which
is close to the true value of 0.08.

In Case 3, we can obtain v,. Since V¥, is already in the
library of fault geometry vector, we need first to check
whether v, and v, represent the same fault. The angle
between ¥, and v, can be calculated using the result of
Theorem 2 by simply substituting L as ¥, and M as v,. The
result is 6 = 61.42°, which is much larger than the critical
value. Therefore, we can claim ¥, and v, are different. It
should also be noted that v, is similar to the second column
of A. Hence, v, is also put into the library and is denoted ¥,.
Similar to Case 2, the magnitude of the fault can be esti-
mated as VD = 0.0943.

In Case 4, again, a single fault is identified. The angles
between the first eigenvector and V,, V, are obtained as

6, = 62.87° and 0, = 3.85° respectively. Clearly, 6, is
much larger than the critical value and 6, is within in the
acceptance region (in this case, N = 50, n = 15, p = 1.
By looking at Table Al in the Appendix, the 99% critical
value should be between 5.84° and 7.63°, depending on the
actual VR value). Therefore, we can claim that the same
fault as that happened in Case 3 happens in this case, which
is consistent with the true situation. The magnitude of the
fault can be estimated as VD = 0.09.

In Case 5, two faults exist. Since there are two fault geom-
etry vectors (¥, and ¥,) in the library, we can check whether
the same two faults happened. First we can use ¥, and ¥, to
form a matrix V = [¥#, ¥,]. By using the simple Gram—
Schmidt procedure [20,27], two orthonormal bases for RV),
denoted V] and ¥}, can be obtained. Using [V]; V5] as L and
the matrix that consists of the first two eigenvectors of Sy asM,
we can calculate the angle between the two subspaces based on
the result of Theorem 2. The result is 6 = 86.94°. Obviously,
they do not span the same space. In this case, we can only say
that some unknown faults happened.

For Case 6, following the same procedure as that in Case 5,
we can obtain 6§ = 7.06°. Based on the data in Table A2 in the
Appendix, the 99% critical value should be within 7.87° and
11.06° regardless of the actual VR ratio (as long as the actual
VR satisfies 50 < C < 100) and C values. Therefore, we can
claim that the same faults happened in this case as that hap-
pened in Case 2 and Case 3. Using A = [V, ¥,], the magni-
tude of the faults can be estimated based on Eq. (9). In this
case, D will be a 2 by 2 matrix. If only the diagonal elements
are used, we have VD,, = 0.15 and VD,, = 0.08.

In Case 7, only one fault is detected. The angle between the
eigenvector that is associated with the largest eigenvalue of Sy
and the fault geometry vectors ¥, and ¥, are 6, = 84.53° and
6,, = 85.22°, respectively. Clearly, a new fault happened. This
eigenvector is put into the library and is denoted as V5. The
magnitude of the fault is estimated as VD = 0.1008.

In Case 8, two faults are detected. Since there are three fault
geometry vectors in the library, we need to check the angles
between the space spanned by the first two eigenvectors in this
case and the space spanned by [V, V,], [V, V3], and [V, V;].
Using the same procedure as that used in Case 6, these angles
can be obtained as 6, = 89.68°, 6, = 5.25°, and 6; = 60.64°,

Table 3. The eigenvalues of S, for each case (10~ mm?).

Cases A A A Ay As Ag Ay Ag Ao Ao A A Az Ay Ass
1 02423  0.1995 0.1729 0.1534 0.1266 0.1181 0.0959 0.0905 0.0824 0.0663 0.0595 0.0543 0.0472 0.0448 0.0302
2 5.5265  0.2165 0.1824 0.1464 0.1406 0.1289 0.1007 0.0945 0.0845 0.0679 0.0538 0.0460 0.0439 0.0343 0.0262
3 12.4105  0.1758 0.1713  0.1419 0.1242 0.1204 0.1102 0.1006 0.0901 0.0762 0.0694 0.0544 0.0445 0.0388 0.0327
4 6.2765  0.2100 0.1791 0.1547 0.1462 0.1093 0.1012 0.0936 0.0862 0.0695 0.0620 0.0521 0.0395 0.0347 0.0298
5 12.6120 11.4840 0.2248 0.2026 0.1502 0.1358 0.1230 0.1056 0.1000 0.0789 0.0695 0.0563 0.0503 0.0444 0.0278
6 23.6044  8.8845 0.1866 0.1742 0.1485 0.1231 0.1199 0.0881 0.0803 0.0706 0.0628 0.0549 0.0500 0.0353 0.0219
7 72109  0.1933  0.1524 0.1452  0.1299 0.1200 0.1018 0.0967 0.0794 0.0693 0.0663 0.0515 0.0481 0.0411 0.0227
8 11.4467  6.6512 0.2322 0.1802 0.1515 0.1370 0.1158 0.0918 0.0765 0.0718 0.0666 0.0517 0.0464 0.0408 0.0274
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Table 4. The MDL testing results.

Cases 1 2 3 4 5 6 7 8
MDL(0) 123.3794 1025.1 1344.5 1291.4 2006.5 1941.4 1354 1515.9
MDL(1) 163.9793 176.7 151.1 185.8 1630.6 1231.7 172.4 986.4
MDL(2) 200.8788 209.1 190.9 219.9 197.3 235.7 205.7 199.8
MDL(3) 236.4687 238.1 226.7 251.5 230.4 262.3 240 2319
MDL(4) 270.5744 267.9 260.1 281.3 263.1 296.5 272.2 261.5
MDL(5) 302.0241 299.2 291.4 308.2 290.9 325.1 302.3 287.2
No. of faults 0 1 1 1 2 2 1 2

respectively. Thus, we can conclude that the same faults that
happened in Case 2 and Case 7 are found in this case. Similar
to Case 6, the magnitude of the fault can be estimated as VD,
= 0.1045 and V'D,, = 0.0822.

From the above numerical studies, we can see that the
variation source identification method developed in this
paper is effective. One point that needs to be mentioned is
that in most practical situations, pinpointing the faults is
much more important than estimating the magnitude of the
fault. In many cases, people only need to know what the
fault is to eliminate it.

4. CONCLUDING REMARKS

This paper presented a variation source identification meth-
odology. The major characteristic of this method is that it does
not require a predefined model that links the system measure-
ments and the variation sources. Instead, this method identifies
the unique geometry vector for each fault only based on quality
measurement data. The variation source identification is con-
ducted based on the key fact of eigenspace decomposition of
S,. The procedure of testing the closeness of two spaces is also
presented. A numerical case study is conducted to illustrate the
effectiveness of this method. This method can be used in quick
root cause identification of a manufacturing process, which
will lead to product quality improvement and production
downtime reduction and hence a remarkable cost reduction in
manufacturing systems.

There are several open issues related to this method. The
first issue is the assumption on the system noise term €. In this
paper, we assume its variance is in the form of o”I. Although
many practical systems can satisfy this requirement (e.g., a

system is very close to linear and the same measurement
device is used to measure all the system output), some systems
(particularly the systems with severe nonlinearity) do not have
this property. In that case, we have to assume a general form
for the covariance matrix of €. How this general form of the
covariance matrix structure will impact on the eigenspace of
2 is an interesting problem. Although it is known that the
perturbation caused by X, in the eigenvectors that associated
with the significant eigenvalues of > is small [15], no rigorous
sampling results are available. This problem is currently under
investigation. The second issue is the diagnosability of this
method. The angle between two eigenspaces is not only deter-
mined by the sampling uncertainty, but also determined by the
nominal angle between them. If the nominal angle is too small,
we might not be able distinguish them due to the sampling
uncertainty. What condition A should satisfy so that we can
uniquely identify each variance source by this method is an
important and interesting problem. The third issue is related to
the gradual building of the library of fault geometry vector
library. In this paper, we only add the geometry vector asso-
ciated with single fault in the library. Although it cannot be
directly extended from single fault case due to the rotational
indeterminacy, it might be interesting to extract more fault
information if possible. Furthermore, when several fault ge-
ometry vectors are obtained for the same fault, how do we
choose the fault geometry vector that may provide the best
detection power? A straightforward way might be to combine
all the fault geometry vectors for the same fault together and
average them. The efficiency of this method is currently under
investigation and the results will be reported in the near future.

Table 5. Important eigenvectors of Sy for each case.

Cases Important eigenvectors

2% 01923  0.2424 0.1008 —0.0389 —0.1768 —0.2985 —0.3708 —0.4325 —0.4872 —0.3383 —0.2712 —0.1198  0.0041 0.0598 0.0653
3% 04096  0.2611 0.0949 —0.0589 —0.2116 —0.3814 —0.2802 —0.1823 —0.1108  0.0460  0.1665 03108  0.4063 0.3231 0.2032
4 0.4048  0.2335 0.1038  0.0065 —0.1841 —0.4091 —0.2927 —0.1517 —0.0926  0.0264  0.1704  0.2854  0.4331 0.3223 0.2228
5 0.4365  0.3169 0.1545  0.0305 —0.1333 —0.2986 —0.2391 —0.1490 —0.1195 0.0452  0.1918  0.3065  0.4000 0.3508 0.2606

0.1581  0.3659 0.3792  0.3976  0.4022 04358  0.3053  0.1077 —0.0224 —0.0686 —0.0659 —0.0705 —0.0763 0.0534 0.2441
6 0.1507 —0.0081 0.0111 —0.0155 —0.0243 —0.0028  0.0726 ~ 0.2199 03912  0.3876 04001 04578  0.4023 0.2871 0.0734

0.3651  0.2780 0.1109 —0.0327 —0.2477 —0.4050 —0.3701 —0.3508 —0.3116 —0.1678 —0.0166  0.1239  0.2548 0.2181 0.1929
7% 02236 03940 03915 04014 03958  0.3729  0.2814  0.0843 —0.0308 —0.0517 —0.0531 —0.0328 —0.0306 0.0898 0.2861
8 0.2272 0.3952 0.4202  0.3863  0.4069 03828  0.2165  0.0681 —0.0647 —0.0773 —0.0331 —0.0263 —0.0263 0.1022 0.2824

0.1939  0.2781 0.1137 —0.0139 —0.1642 —0.3140 —0.3823 —0.4242 —0.4587 —0.3660 —0.2268 —0.1086 —0.0149 0.0327 0.1070

* The eigenvectors of Case 2, 3, and 7 are denoted V,, V,, and V5, respectively.
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Table Al. Critical angles (degree) and summary statistics (o2 = 0.01%, p = 1).
N n VR 6 oy 90%  95% 9% N n VR 0 oy 90%  95%  99%
50 10 50 4.01 0.28 5.29 5.71 6.53 100 10 50 2.79 0.17 3.65 3.93 4.45
100 3.14 0.33 4.08 4.38 4.95 100 2.20 0.22 2.84 3.04 3.41
150 2.83 0.36 3.62 3.86 4.34 150 1.97 0.24 2.51 2.67 2.98
200 2.61 0.38 3.30 351 3.93 200 1.83 0.26 2.30 2.44 2.71
15 50 5.02 1.01 6.34 6.78 7.63 15 50 3.51 0.68 4.39 4.67 5.20
100 3.97 0.74 4.93 5.23 5.84 100 2.76 0.50 3.41 3.61 3.99
150 3.55 0.62 4.34 4.59 5.08 150 2.47 0.42 3.01 3.18 3.49
200 332 0.54 4.01 4.23 4.66 200 232 0.37 2.79 2.94 3.21
20 50 5.90 0.29 7.26 7.70 8.59 20 50 4.11 0.19 5.01 5.29 5.82
100 4.63 0.36 5.60 592 6.54 100 3.25 0.23 3.90 4.10 4.49
150 4.15 0.41 4.96 5.22 5.72 150 2.90 0.27 3.45 3.61 3.93
200 3.88 0.42 4.59 4.81 5.24 200 2.71 0.29 3.19 333 3.61
30 50 7.31 0.31 8.74 9.21 10.15 30 50 5.10 0.19 6.03 6.31 6.87
100 5.77 0.40 6.79 7.12 7.77 100 4.03 0.24 4.70 4.91 5.30
150 5.14 0.44 5.98 6.25 6.78 150 3.58 0.26 4.14 431 4.63
200 4.80 0.46 5.53 5.76 6.22 200 3.37 0.30 3.85 4.00 4.28

Table A2. Critical angles (degree) and summary statistics (o2 = 0.012, p = 2).
N n VR C 2 oy 90% 95% 9% N n VR C 0 g, 90% 95% 99%
50 10 50 75% 7.04  2.02 7.67 7.91 842 100 10 50 75% 5.82 188 6.18 632 6.60
50% 741  2.04 8.14 8.41 8.98 50% 6.00 1.82 643 659 691
33% 776 1.86 8.76 9.15 9.94 33% 6.10 1.74 671 693 7.38
100 75% 6.87 221 7.25 7.40 7.70 100 75% 549 196 572 581 598
50% 7.03 231 7.50 7.67 8.04 50% 5.66 193 594 6.04 6.24
33% 722 222 7.86 8.10 8.60 33% 570 1.87 6.09 623 6.52
150  75% 6.75 233 7.04 7.15 7.37 150 75% 546 195 5.63 570 582
50% 6.86 224 7.22 7.35 7.63 50% 556 196 578 586 6.01
33% 6.99 220 7.47 7.65 8.03 33% 5.66 190 595 6.05 6.27
15 50 75% 7.68  1.87 8.43 8.71 9.29 15 50 75% 6.08 180 652 6.68 7.00
50% 8.13 1.89 8.96 9.26 9.89 50% 6.18 1.74 6.68 686 7.22
33% 8.73 1.91 9.82 1023 11.06 33% 658 1.68 725 748 7.95
100 75% 724 2.09 7.70 7.87 8.21 100 75% 573 188 6.01 6.10 6.30
50% 740  2.11 7.96 8.16 8.56 50% 5.82 178 6.15 626 649
33% 7.64  2.04 8.39 8.66 9.22 33% 6.12 172 655 670 7.02
150  75% 7.15 218 7.50 7.63 7.88 150 75% 5.64 189 586 593 6.08
50% 733 214 7.76 791 8.22 50% 5.75 190 6.01 6.10 6.28
33% 741  2.08 7.98 8.19 8.62 33% 593 1.84 627 639 6.63
20 50 75% 824 177 9.08 9.39  10.03 20 50 75% 649 172 698 7.15 7.0
50% 8.62 175 9.53 9.86 10.54 50% 6.50 1.57 7.05 724 7.62
33% 9.28  1.58 1045 10.87 11.75 3% 7.09 152 778 8.02 8.50
100 75% 7.59  2.01 8.11 8.29 8.68 100 75% 6.02 177 632 643 06.64
50% 792  2.03 8.52 8.73 9.16 50% 6.14 1.72 651 6.63 6.87
33% 836 190 9.15 9.43 10.02 33% 638 163 686 7.02 7.35
150  75% 742 215 7.82 7.97 8.26 150 75% 592 184 6.16 624 6.39
50% 7.61 211 8.08 8.25 8.58 50% 594 176 623 632 651
33% 792 195 8.54 8.77 9.23 3% 6.19 176 656 6.69 6.95
30 50  75% 9.12 158 10.13 1049 11.23 30 50 75% 7.00 145 757 777 8.16
50% 9.55 1.58 10.58 1095 11.70 50% 7.15 139 777 798  8.38
33% 1028 140 11.54 1198 1290 33% 772 136 845 870 9.19
100 75% 824  1.85 8.86 9.08 9.53 100 75% 6,53 171 6.88 7.00 7.24
50% 8.60  1.82 9.28 9.52  10.00 50% 6.54 158 695 7.09 7.36
33% 899  1.65 9.89 1021 10.86 33% 6.88 155 741 759 794
150 75% 791 1.93 8.38 8.54 8.88 150 75% 6.17 172 645 654 6.72
50% 8.17  1.88 8.71 8.90 9.28 50% 634 168 6.67 6.78 6.99
33% 858 175 9.29 9.54 10.05 33% 6.60 162 7.02 7.16 744
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