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Variation-source identification in manufacturing processes is highly desired since it enables improvements in product quality. Recently,
data-driven variation-source identification has received considerable attention. This paper presents a systematic variation-source
identification method by assuming a linear model between the quality measurements and process faults. The noise term in the model
is assumed to have a simple form. The variation-source identification is achieved through the testing of the common eigenspace
between the fault signatures and the covariance matrix of the newly collected samples. Three types of fault signatures are constructed
from either one or two covariance matrices for pattern matching. A systematic procedure to construct the signature is presented. A
case study of a machining operation is conducted to illustrate the effectiveness of the proposed methodology.

1. Introduction

Statistical process control (SPC) (Montgomery and
Woodall, 1997) is a popular technique used in practice for
quality improvement. However, SPC possesses limited di-
agnosis capabilities to identify the variation sources after
quality changes are detected. Woodall and Montgomery
(1999) highlighted variation-source identification as an im-
portant research direction in SPC. Consider the following
example of a machining operation (Fig. 1(a–c)). The work-
piece is a cube of metal (only the front view is shown). Sur-
face C of the workpiece is milled in the first step (Fig. 1(a)).
In the second step, a hole is drilled into surface D (Fig. 1(b))
with the workpiece being located in the fixture. Clearly, the
resulting hole is not perpendicular to surface D (Fig. 1(c))
due to a fixture error. The fixture error could be a mean shift
in the locating pin height due to an error during set up or a
variance increase in the locating pin height due to the pin
becoming loose. In most cases, the mean-shift error can be
easily compensated even without knowing the error sources.
For example, if the drilled hole always deviates from 90◦ by
a fixed value, the angle between the drill and the fixture
can be adjusted to compensate for this deviation without
removing the fixture error. The error of variation increase
is much more difficult to remove. The sources of this vari-
ation increase, so-called “variation sources”, often need to
be identified before being eliminated. One point needing to
be clarified here is that there are many sources in a pro-
cess that cause variation. However, only those sources that
cause excessive variation are defined as “variation sources”
in this paper. Therefore, variation sources are also called

“process faults.” The quality change can be detected using
the SPC technique, however, fault diagnosis is often left to
the operator and the troubleshooting activities are mainly
based on experience.

In practice, it is highly desirable to develop system-
atic methodologies to identify the variation sources from
process/product information. Significant developments in
computer and sensing technologies provide us with great
opportunities in this research direction. Extensive measure-
ment data on manufacturing processes are now often read-
ily available. In some manufacturing processes such as au-
tobody assembly processes, 100% dimension inspection has
been achieved through in-line optical coordinate measure-
ment machines (Ceglarek and Shi, 1995). However the ex-
istence of extensive data sets means that the questions of
how to efficiently retrieve useful information and then re-
late them to the variation sources have become increasingly
important.

Several linear models have been proposed to link the
quality measurement data and the variation sources (Jin
and Shi, 1999; Mantripragada and Whitney, 1999; Ding
et al., 2000;, Huang et al., 2000; Camelio et al., 2003; Djur-
djanovic and Ni, 2001; Zhou et al., 2003). These linear mod-
els can be put in the following generic form:

y = Af + ε, (1)

where y is a vector consisting of product quality measure-
ments that are the deviations of quality characteristics from
their nominal values, A is a constant coefficient matrix de-
termined by the process/product design, f is a vector that
represents the process variation sources, and ε includes the
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Fig. 1. Effect of fixture error on product dimensional quality:
(a) the first step of milling the workpiece; (b) a hole is drilled;
(c) clearly the hole is not perpendicular to surface D.

measurement noise and unmodeled variations. The above
mentioned fault-quality model is derived from the first
principles of the process. These models can provide useful
insights into the link between the variation sources and
product-quality measurements. However, the physics of the
process need to be thoroughly studied if a valid process
model is to be produced, which is usually very difficult, if
not impossible, for a large-scale system (Chiang et al., 2001).

Data-driven models do not require much a priori knowl-
edge on the manufacturing process. Instead, data-driven
models focus on investigating patterns in the extensive his-
torical data sets to estimate the coefficient matrix A. Apley
and Shi (2001) presented a descriptive method that is able to
extract and interpret information from the quality data by
assuming that the coefficient matrix A in Equation (1) has a
ragged lower-triangular form. The physical interpretations
of the faults are pursued after A is estimated. Later, Ap-
ley and Lee (2003) proposed a blind separation approach
to identify spatial variation patterns in manufacturing data.
Some specific autocorrelation or distribution conditions are
required on the variation sources and process noise to ap-
ply these techniques. Most recently, Jin and Zhou (2005)
proposed a method to estimate the column vectors of the A
matrix using a gradual learning procedure. This procedure
is based on the fact that if only one variation source exists
(only one nonzero component in f), and the covariance of
ε is in the form of σ 2I, I being the identity matrix, then the
eigenvector associated with the largest eigenvalue of Σy, the
covariance matrix of y, is then the same as the column of A
that corresponds to the nonzero component of f. Thus, the
column vectors of A can be obtained when a single fault
occurs in the system and can be stored as signatures of the
corresponding variation sources in a library.

Signature matching is a popular method to identify vari-
ation sources based on quality measurement data after the
fault-quality model has been built. In many available signa-
ture matching techniques including those of Ceglarek and
Shi (1996), Rong et al. (2000), and Ding et al. (2002) the
columns of A are treated as the signatures of corresponding
faults and it is assumed that during the data collection pe-
riod, only one fault occurs in the system. In their approach,
the eigenvector associated with the largest eigenvalue of Sy,

the sample covariance matrix of y, is calculated and com-
pared with the columns of A that are either derived through
a physical analysis of the process or estimated based on the
historical data. If there is a match, then the correspond-
ing fault happened in the system. Fisher Discrimination
Analysis (FDA) (Russell and Braatz, 1998) classifies the
scattered groups in the historical data and treats a group
as a signature of an individual fault. The advantage of this
method is that it may provide fast fault diagnosis since it
does not need to wait for the accumulation of new samples
to construct a covariance matrix before diagnosis. The FDA
method is used mainly in mean-shift detection and may have
difficulty dealing with unknown faults since there is no pre-
defined discriminate function for those unknown faults. In
addition, since each discriminant function is defined for one
particular fault only, how to apply this approach to the case
where multiple faults happen simultaneously is not clear.
In Jin and Zhou (2005), signature matching is extended to
the multiple-fault case. In their method, the identification
of multiple variation sources was achieved by comparing
the space spanned by the eigenvectors associated with large
eigenvalues of Sy and the space spanned by the fault signa-
tures in a fault library. Although signature matching can be
conducted under a multiple-fault condition, the signature
construction procedure still needs the single-fault condition
in that method.

In this paper, we develop a systematic technique to con-
struct the signatures of process faults and a rigorous testing
procedure to identify the variation sources through signa-
ture matching. There are two salient features of the pro-
posed technique: (i) we discard the traditional method of
using column vectors of A as fault signatures. Instead, we
treat each sample covariance matrix under a fault condi-
tion as a fault signature. The method can construct fault
signatures not only when a single fault exists in the system,
but also when multiple faults occur simultaneously; and (ii)
the testing statistics for signature matching have analytical
expression and thus the testing performance will not be in-
fluenced by the values of A.

This paper is structured as follows. In Section 2, the prob-
lem formulation, the method of signature construction, and
the procedures of variation-source identification and per-
formance evaluations (study on the type-I error) on the
proposed procedures are presented. A complete procedure
is developed that is able to quickly identify the process-
variation sources. A case study is illustrated in Section 3
to demonstrate the effectiveness of this technique. Conclu-
sions are presented in Section 4.

2. Signature construction and variation-source
identification

2.1. Problem formulation

In this paper, we adopt a linear relationship between
the process faults and product quality, as shown in
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Equation (1). Although the relationship between y and f
is in general nonlinear, a linear relationship can provide a
good approximation because the process faults are often
small in magnitude. In this paper, the following assump-
tions are made in solving Equation (1):

1. A is an unknown m by k matrix. The columns of A are
linearly independent.

2. f is a k by 1 vector that follows a multivariate normal
distribution N(0, D), where D is a diagonal matrix. The
components of f are assumed to be independent because
the process faults are often independent of one another.

3. ε is an m by 1 vector that follows a multivariate normal
distribution N(0, σ 2 I), where σ 2 is a scalar and I is the
identity matrix. Furthermore, we assume that ε is inde-
pendent of f. This assumption is reasonable if the same
measurement device is used to measure all the quality
characteristics. For example, if we use the same Coor-
dinate Measurement Machine (CMM) to measure the
positions of many points on a car body, the covariance
of the measurement errors of these points can be viewed
in this form. The same assumption has been discussed
and adopted by many researchers, such as Ceglarek and
Shi (1996), Rong et al. (2000), and also Apley and Shi
(2001).

Based on this linear model, the problem of variation-
source identification can be formulated as follows. Given
multiple observations of y, how do we identify which faults
happen?

To analyze Equation (1), we take the covariance of both
sides and get:

Σy = AΣfAT + σ 2I. (2)

where Σy is the population covariance matrix of y (the
m-dimensional quality measurements) and Σf is the co-
variance matrix of f. It is known that if k faults exist in
the system, we will have λ1 ≥ λ2 ≥ . . . ≥ λk ≥ σ 2 = λk+1 =
. . . = λm, where λi, i = 1 . . . m, are the eigenvalues of Σy. A
straightforward analysis can show that the k eigenvectors
associated with the first k largest eigenvalues of Σy span
the same linear space of the k column vectors of the A ma-
trix corresponding to the k faults (Apley and Shi, 2001).
This result possesses a very important implication: if the
same k faults happen in the system, then the first k eigen-
vectors of Σy should span the same linear space. Based on
this implication, a new technique for the construction and
identification of fault signatures can be developed. First,
we introduce some terminologies.

� Fault vectors and fault space. If k (k > 0) faults occur
simultaneously in the system, then the k eigenvectors as-
sociated with the k largest eigenvalues (λ1, λ2, . . . , λk)
of Σy are called the fault vectors of Σy and the space
spanned by the k eigenvectors is called the fault space
of Σy, which will be denoted as F (Σy). For the sake
of convenience, in this paper, “the fault space of Σy” is

equivalent to “the fault space spanned by all the fault
vectors of Σy”. Because eigenvectors of a real symmet-
ric matrix are real and orthogonal to one another, the
dimension of F (Σy) is M-dimensional if and only if the
number of fault vectors of Σy is equal to M. The dimen-
sion of F (Σy) is denoted as dim(F (Σy)).

� Equivalence of two fault spaces. Two fault spaces F (Σ1)
and F (Σ2) (without causing confusion, Σyi is simplified
as Σi) are said to be equivalent if and only if the fault
vectors of Σ1 and Σ2 span the same space, denoted as
F (Σ1) = F (Σ2). It is important to note that if two fault
spaces are equivalent, then the dimension of the two fault
spaces should also be equal.

� Operations of fault spaces. Given two fault spaces F (Σ1)
and F (Σ2), the sum space of the two fault spaces is the
overall space spanned by all the independent fault vec-
tors from both fault covariance matrices Σ1 and Σ2,
and it is denoted as F (Σ1)+F (Σ2). The dimension of
the sum space of two fault spaces is the total number
of all the independent fault vectors from both fault co-
variance matrices. Obviously, dim(F (Σ1) + F (Σ2)) ≤
dim(F (Σ1)) + dim(F (Σ2)), and if two fault spaces are
equivalent, then the dimension of the sum space of the
two fault spaces should be equal to the dimension of each
individual fault space, denoted as dim(F (Σ1)+F (Σ2))
= dim(F (Σ1)) = dim(F (Σ2)). Similarly, given g fault
spaces of Σ1, Σ2, . . . , Σg, the sum space of the g
fault spaces is the overall space spanned by all the
independent fault vectors from all the fault covari-
ance matrices Σ1, Σ2,. . . , Σg and it is denoted as
F (Σ1)+F (Σ2) + . . . +F (Σg). Similarly, we define the
intersection (F (Σ1) ∩ F (Σ2)) of two fault spaces as the
linear space of {v: v ∈ F (Σ1) and v ∈ F (Σ2)}, the relative
complements (F (Σ1) ∼ F (Σ2)) as the linear space such
that (F (Σ1) ∼ F (Σ2)) ⊕ (F (Σ1) ∩ F (Σ2)) = F (Σ1),
where “⊕” represents direct sum of two linear spaces.

� Fault labels and fault set. To simplify the notation, we use
natural numbers (1, 2, 3, . . . ) to label all the identified
independent faults. If the fault vector of a given fault
label, say v, belongs to a fault space F (Σy), then we say
that v is contained in Σy, denoted as v ∈ F (Σy). A fault
set of a fault covariance matrix Σy is a set of all the
fault labels that are contained in Σy. A fault library is a
collection of all the historical fault covariance matrices
and corresponding fault sets. The size of a fault set is
the total number of fault labels that are contained in the
fault set. Because fault vectors associated with different
faults are independent from one another, it is obvious
that the size of a fault set is equal to the dimension of
the corresponding fault space.

The various concepts introduced above can be used to
study the relationships among fault spaces associated with
multiple fault-covariance matrices. However, in practice,
the population covariance-matrix of quality measurements
is not available. Systematic statistical testing needs to be
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used to identify the properties of the fault spaces using the
corresponding sample covariance matrices.

The Akaike Information Criteria (AIC) and minimum
description length (MDL) information criteria can be used
to estimate the number of faults in a single fault space
F (Σy) (Apley and Shi, 2001). The AIC and MDL crite-
ria are given as:

AIC(l) = N(m − l) log(al/gl) + l(2m − l), (3)

and

MDL(l) = N(m − l) log(al/gl) + l(2m − l) log(N)/2, (4)

where N is the sample size, m is the dimension of the quality
measurement, and al and gl are the arithmetic mean and the
geometric mean of the (m − l) smallest eigenvalues of sam-
ple covariance matrix Sy, respectively. To use this criteria,
AIC(l) and MDL(l) are evaluated for l = 0 . . . m − 1. The
estimated fault number k is chosen as the l that minimizes
AIC(l) or MDL(l), respectively.

The focus of this paper is to analyze the relationship
among multiple fault spaces and to develop systematic sig-
nature construction and matching techniques for variation-
source identification based on this relationship.

2.2. Testing procedure on the number of faults in two or
more fault covariance matrices

It is clear that F (Σy) is actually the space spanned by cer-
tain eigenvectors of Σy. Therefore, statistical testing pro-
cedures on the properties of the eigenspace of Σy can be
used to identify the variation sources. Several techniques
have been developed for this purpose. Krzanowski (1979,
1982) studied the closeness of two eigenspaces using the
principal angle between the eigenvectors from each fault
covariance matrix. Raich and Cinar (1995) extended this
method by using a similarity factor which is the sum of
squares of the cosines of the angles between the model
axes. Both methods provide an intuitive geometric under-
standing of the eigenspace. However, it is difficult to find
an explicit distribution for either the principal angle or the
similarity factor and thus it is difficult to conduct general
statistical inferences based on these two statistics. Flury
(1987) proposed a simultaneous method to test the com-
mon eigenspace among multiple covariance matrices. How-
ever, his method does not require the common eigenspace
to relate with the largest eigenvalues and thus the com-
mon eigenspace might also contain eigenvectors that are
not fault vectors. Hence, this method cannot be used for
fault identification. Schott (1988, 1991) presented a testing
procedure to estimate the size of the common eigenspace by
comparing the first k principal components. This method,
if used in fault identification, requires the same number
of faults to have occurred for all the covariance matrices,
which severely limits the application of the testing proce-
dure. Boik (2002) further proposed a more general model
which subsumes both Flury’s and Schott’s models as special

cases. However, how to parameterize the model for an arbi-
trary number of faults with any specified magnitude is still
under investigation. In this paper, we will use a test statis-
tic, which is actually an extension of the results of Schott
(1999) to study the dimension of the fault space of several
fault covariance matrices. The following theorem provides
a powerful statistical testing procedure which lays the foun-
dation for the signature construction and matching in this
paper.

Theorem 1. Given g samples of m variables of normally
distributed quality measurements, the sample and popula-
tion covariance matrices of these g samples are Si and
Σi (i = 1, 2,. . . , g), and dim(F(Σy)) = ki, then the test
statistic, denoted as Ts , for the following hypothesis test-
ing, has an asymptotically chi-squared distribution with vs =
(
∑g

i = 1 ki − s)(m − s) degrees of freedom, where:

Ts = nv′
∗(F�̂∗F)+v∗. (5)

The hypothesis testing is:

H0s : dim(F (Σ1)+F (Σ2) + . . . +F (Σg)) = s where
max(ki) − 1 < s < t and t = min(

∑g
i = 1 ki,m)

H1s : dim(F (Σ1)+F (Σ2) + . . . +F (Σg)) > s.

The expression of Ts is quite complicated. The terms involved
in Equation (5) are explained as follows:

� n = n1 + · · · + ng, where ni = Ni − 1 and Ni is the sam-
ple size of the ith sample, i = 1, 2, . . . , g.

� Let λi1 ≥ · · · ≥ λiki > λiki+1 ≥ · · · ≥ λim be the eigenval-
ues of Σi, with qi1,. . . , qim being corresponding orthonor-
mal eigenvectors. The ith group’s eigenprojection Pi cor-
responding to the eigenvalues λi1 ≥ · · · ≥ λiki is denoted
as Pi = qi1q′

i1 + · · · + qiki q
′
iki

. If H0s is true, the matrix
P = P1 + . . . + Pg will have a rank of s. If λ1 ≥ · · · ≥
λs > λs + 1 = . . . = λm = 0 are the eigenvalues of P and
q1,. . . , qm are corresponding orthonormal eigenvectors.
P̂∗ = ∑s

j = 1 λ̂jq̂jq̂′
j and P̂+

∗ is the Moore-Penrose gener-
alized inverse of P̂∗. We denote Γ̂0 = (q̂s+1, . . . , q̂m) and
Γ̂i = (q̂i1, · · · ,q̂iki ):

v∗ = (vec(Γ̂
′
0Γ̂1)′, . . . ,vec(Γ̂

′
0Γ̂g)′)′, (6)

where vec(·) is a stacking vector operator (Schott, 1997).
� Φ̂∗ is defined as a block diagonal matrix diag

(Ψ̂∗1, . . . ,Ψ̂∗g) + V, where diag(.) places its elements
along the diagonals sequentially:

Ψ̂∗f =
kf∑

j = 1

m∑
l = kf + 1

nλ̂fjλ̂f l

nf (λ̂fj − λ̂f l)
2 eje′

j ⊗ Γ̂
′
0q̂f l q̂′

f lΓ̂0,

where ej denotes the jth column of the kf × kf iden-
tity matrix, and ⊗ is the direct or Kronecker product.
For each (h,i) (h = 1,. . . ,g and i = 1,. . . ,g) define the
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kh(m − s) × ki(m − s) matrix as:

Vhi =
g∑

f =1

(Γ̂
′
hP̂+

∗ Γ̂f ⊗ Im−s)Ψ̂∗f (Γ̂
′
f P̂+

∗ Γ̂i ⊗ Im−s)

− (Γ̂
′
hP̂+

∗ Γ̂i ⊗ Im−s)Ψ̂∗i − Ψ̂∗h(Γ̂
′
hP̂+

∗ Γ̂i ⊗ Im−s)
(7)

Finally, the matrix V is defined as a
∑g

i=1 ki(m −
s) × ∑g

i = 1 ki(m − s) partitioned matrix and Vhi as its
(h,i)th block.

� The matrix F is the eigenprojection matrix of Φ̂∗ corre-
sponding to its (

∑g
i = 1 ki − s)(m − s) largest eigenvalues.

Proof. The proof of this theorem is provided in the
Appendix. �

Remark 1. Theorem 1 provides a powerful and rigor-
ous testing procedure for variation-source identification.
A straightforward application of Theorem 1 is to check
how many faults commonly exist among multiple covari-
ance matrices. Figure 2 illustrates this point.

From Fig. 2, the sum of two fault spaces are separated
into three parts, i.e., F (Σ1) ∼ F (Σ2), F (Σ2) ∼ F (Σ1), and
F (Σ1)∩ F (Σ2). From linear algebra, we have that:

dim(F (Σ1) + F (Σ2)) = dim(F (Σ1)) + dim(F (Σ2))
− dim(F (Σ1) ∩ F (Σ2)). (8)

Using Theorem 1, we can easily obtain dim(F (Σ1) ∩
F (Σ2)). For example, assume that there are two covari-
ance matrices Σ1 and Σ2 and dim(F (Σ1)) and dim(F (Σ2))
are both two from the MDL testing criteria (Equation (4))
based on the sample covariance matrices S1 and S2. Then
we can select s as two and three to conduct the hypothe-
sis testing of H0s : dim(F (Σ1) + F (Σ2)) = s using the test
statistic Ts . First, the value of Ts can be calculated accord-
ing to Equation (5). Then Ts is compared with the critical
value of the test, χ2

1−α,vs
, where α is a selected significance

level such as 0.05, 0.01, etc. If Ts is larger than the critical
value, then we claim that there is significant statistical evi-
dence against H0s and we have to reject H0s . Otherwise we
claim that there is no significant evidence against H0s and we
have to accept dim(F (Σ1) + F (Σ2)) as s. Finally, the min-
imum of the values of s that satisfy Ts<χ2

1−α,vs
will be taken

as the estimated dimension of dim(F (Σ1) + F (Σ2)). The
testing result is very informative from a variation-source
identification point of view. In the current example, if the

Fig. 2. The relationship between two fault spaces.

testing indicates that s = 2, then we can claim that the same
faults happen in the first and second samples. Similarly, if
s = 3, then there is only one and if s = 4, then no common
faults happen in the two samples, respectively.

From the above discussion of the application of Theorem
1, it is clear that a sample covariance matrix S1 can be used
as the signature of the fault that happens during the sam-
pling period. When a new sample (S2) is obtained, we can
simply check whether or not dim(F (Σ1) + F (Σ2)) is larger
than F (Σ2). If it is not larger, then the same fault repre-
sented by S1 happened in the second sample. Because it
is reasonable to assume that people have understood previ-
ously identified faults, this technique can help tremendously
in fault identification and elimination.

Because the testing procedure provided by Theorem 1
can be applied to multiple-fault conditions, the fault sig-
nature for simultaneous multiple faults can be obtained.
Furthermore, by considering multiple sample-covariance
matrices together, more complicated fault signatures can be
achieved. This can help to extract more information from
the measurement data and thus fully utilize the existing
measurement data. In the next section, we will present the
construction of three types of fault signatures.

2.3. Construction of fault signatures

The purpose of a fault signature is to pinpoint a particular
fault set whenever it happens again. In order to fully utilize
the existing samples and their covariance matrices under a
fault condition, we propose three types of fault signatures:
type-A, type-B, and type-C. The reason that we classify the
fault signatures into three types is because we have to apply
different testing procedures for each type of fault signature
in order to successfully identify the fault in the new samples.

2.3.1. The type-A fault signature
The type-A fault signature is simple: any historical fault co-
variance matrix can be chosen as the type-A fault signature
for the fault set associated with it. We denote < S1, A > or
< S1 > as the type-A fault signature of the faults contained
in F (Σ1). The utilization of a type-A fault is described by
Proposition 1.

Proposition 1. Given a type-A fault signature S0 (the cor-
responding population covariance being Σ0) that contains k
faults and a new sample with sample covariance S1 (the cor-
responding population covariance being Σ1), then F (Σ0) ⊆
F (Σ1) if and only if dim(F (Σ0) ∩ F (Σ1)) = dim(F (Σ0)).

Proof. The proof of this proposition is quite straightfor-
ward and is omitted here. �

The value of dim(F (Σ0) ∩ F (Σ1)) can be determined us-
ing Theorem 1. This proposition provides us with a proce-
dure to utilize the type-A signature to test if all the faults in
F (Σ0) occur in the new sample. The type-A fault signature



346 Jin and Zhou

has the simplest testing procedure. Hence, we recommend
the type-A fault signature as the first choice.

2.3.2. Type-B fault signature
Type-A fault signatures provide a simple testing procedure
for fault identification. However, we may not always be able
to obtain a type-A fault signature for an individual fault
because some faults may have limited occurrences and his-
torically they may always occur simultaneously with some
other faults. In this case, we need to investigate the inter-
actions among multiple covariance matrices to obtain fault
signatures for those faults.

From Fig. 2, we have that:

F (Σ1) + F (Σ2) = F (Σ1) ∼ F (Σ2) + F (Σ2) ∼ F (Σ1)
+F (Σ1) ∩ F (Σ2). (9)

We denote <S1, S2, B> as the type-B fault signature of
the faults contained in F (Σ1)∩ F (Σ2).

Proposition 2. Given two sample covariance matrices S1
and S2, and denoting the corresponding population covari-
ance as Σ1 and Σ2, respectively, then for any new co-
variance matrix Si (the corresponding population covari-
ance being Σi), we have F (Σ1) ∩ F(Σ2) ⊆ F (Σi) if and
only if dim(F (Σ1) ∩ F (Σi)) + dim(F (Σ2) ∩ F (Σi)) = k0 +
dim(F (Σ1) ∩ F (Σ2)) where:

k0 = dim(F (Σi)) − [dim(F (Σi) + F (Σ1) + F (Σ2))
− dim(F (Σ1) + F (Σ2))] (10)

Physically, k0 represents the number of common faults be-
tween F (Σi) and F (Σ1) + F (Σ2).

Proof. First, denote the number of common faults between
F (Σ1) and F (Σ2) as CF, i.e., CF = dim(F (Σ1) ∩ F (Σ2)),
we have that:

dim(F (Σ1) ∩ F (Σi))
+ dim(F (Σ2) ∩ F (Σi)) − k0 − CF = 0 (11)

then substituting Equation (10) into Equation (11) and
noticing (8) and that dim(F (Σ1) + F (Σi)) + dim(F (Σ2) +
F (Σi)) = dim(F (Σ1) + F (Σ2) + F (Σi)) + dim((F (Σ1)
∩ F (Σ2)) + F (Σi)), we have that dim(F (Σi)) − dim((F
(Σ1) ∩ F (Σ2)) + F (Σi)) = 0. Therefore, dim(F (Σi)) =
dim((F (Σ1) ∩ F (Σ2)) + F (Σi)) and thus we have that
F (Σ1) ∩ F (Σ2) ⊆ F (Σi).

Second, if F (Σ1) ∩ F (Σ2) ⊆ F (Σi), then dim((F (Σ1)
∩ F (Σ2)) + F (Σi)) = dim(F (Σi)) and Equation (11) can
be simply obtained.

The geometric interpretation of Proposition 2 is il-
lustrated in Fig. 3. Each oval in the figure represents
one fault space. The intersection between F(Σi) and
F (Σ1) + F (Σ2) are represented by three spaces: (i) F1 =
(F (Σ1) ∩ F (Σi)) ∼ F (Σ2), (ii) F2 = (F (Σ2) ∩ F (Σi)) ∼
F (Σ1), and (iii) F3 = F (Σ1) ∩ F (Σ2) ∩ F (Σi). If Equation
(11) holds, F3 will completely fall inside F (Σi). Therefore,

Fig. 3. Geometric interpretation of Proposition 2.

then <S1, S2, B> can be viewed as a signature of the faults
contained in F3.

This proposition provides a procedure to test if the in-
tersection of two fault spaces has happened in the newly
collected samples (Si) by checking whether Equation (11)
is valid using the testing of Theorem 1. �

2.3.3. Type-C fault signature
Similar to the definition of type-B fault signature, we de-
fine <S1, S2, C> as the type-C fault signature of the faults
contained in F (Σ1) ∼ F (Σ2). The utilization of a type-C
signature is described by Proposition 3.

Proposition 3. Given two sample covariance matrices S1 and
S2, and denoting the corresponding population covariance as
Σ1 and Σ2, respectively, then for any new covariance matrix
Si (the corresponding population covariance being Σi), we
have that F (Σ1) ∼ F (Σ2) ⊆ F (Σi) if and only if

dim(F (Σ2) ∩ F (Σi)) + dim(F (Σ1) ∼ F (Σ2)) = k0. (12)

Proof. First, we denote UF = dim(F (Σ1) ∼ F (Σ2)) as the
number of unique faults in F (Σ1) but not in F (Σ2)) and
substitute Equation (10) into Equation (12). Noticing that
dim(F (Σ2) ∩ F (Σi)) = dim(F (Σ2)) + dim(F (Σi)) − dim
(F (Σ2)+F (Σi)) and dim(F (Σ1) ∼ F (Σ2)) + dim
(F (Σ2)) = dim(F (Σ2) + F (Σ1)), we have that dim(F (Σi)
+ F (Σ1) + F (Σ2)) = dim(F (Σ2) + F (Σi)).

Therefore, F (Σ1) ⊆ F (Σ2) + F (Σi) ⇒ F (Σ1) ∼ (F
(Σ2) ⊆ (F (Σi) + F (Σ2)) ∼ F (Σ2), however, because
(F (Σi) + F (Σ2)) ∼ F (Σ2) = (F (Σi) ∼ F (Σ2)) and
(F (Σi) ∼ F (Σ2)) ⊆ F (Σi), we have F (Σ1) ∼ F (Σ2) ⊆
F (Σi).

Second, if (F (Σ1) ∼ F (Σ2)) ⊆ F (Σi), then we have
that F (Σ1) + F (Σ2) + F (Σi) = F (Σ2) + F (Σi) and thus
Equation (12) can be obtained through a straightforward
derivation. �

The geometric interpretation of Proposition 3 is shown
in Fig. 4. Similar to the interpretation of Proposition 2, the
intersection between F (Σi) and F (Σ1) + F (Σ2) consists of
three spaces: F1, F2, and F3. If Equation (12) holds, then F1
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Fig. 4. Geometric interpretation of Proposition 3.

will fall completely inside F (Σi). Therefore, <S1, S2, C>

can be used as a signature of F (Σ1)∼F (Σ2).
This proposition provides a procedure to test if the

complement part of two fault spaces F (Σ1) ∼ F (Σ2) has
happened in the newly collected samples (Si) by check-
ing whether Equation (12) is valid using the testing of
Theorem 1 and the signature of <S1, S2, C>. The value
of dim(F (Σ1) ∼ F (Σ2)) can be estimated through the
identity dim(F (Σ1) ∼ F (Σ2)) = dim(F (Σ1)) – dim(F (Σ1)
∩ F (Σ2)), where dim(F (Σ1)) can be determined using
MDL criteria and dim(F (Σ1) ∩ F (Σ2)) can be determined
by Equation (8) and Theorem 1.

The construction of the fault signatures should be based
on the requirement of engineering applications. In many ap-
plications, we want to isolate individual variation sources.
Hence, the signature of a single fault has the highest priority
for construction. However, the signatures of multiple faults
set can also be constructed following the same procedure.
The fault signatures can be constructed in the following one,
two or three steps depending on the available information.

Step 1. For each fault label, search for the type-A fault sig-
nature for this particular fault. If we can find a fault
covariance matrix that contains only the given fault,
we will assign this fault covariance matrix as the
type-A fault signature of this particular fault and
stop the search for the fault signature of this fault.

Step 2. If a type-A fault signature cannot be found, we ex-
tend the search scope to test if one fault set that
contains this fault label and another fault set that
does not contain this fault label are able to gener-
ate a type-C signature for this particular fault. If
found, we will stop the search to the signature of
this particular fault.

Step 3. If a type-C fault signature of this particular fault
still cannot be found, we further extend the search
scope to test if any two fault sets that contain this
fault label are able to generate a type-B signature for
this particular fault. If a type-B fault signature still
cannot be found, then this fault always occurs si-

multaneously with some other faults and cannot be
uniquely detected by the available data. In this case,
a fault signature for multiple faults that contains
this fault label is recommended to be constructed.

Remark 2. In this procedure, we prefer a type-C fault sig-
nature to a type-B fault signature because the testing pro-
cedure for type-C fault signatures generally has a smaller
type-I error than that of the type-B fault signature. This
result can be observed in Section 2.5.

Remark 3. The proposed signature-construction procedure
only involves two covariance matrices at most. Theoreti-
cally, we might obtain even more detailed partitions based
on three or more covariance matrices. However, in many
cases, this is not necessary because: (i) further partitions will
significantly increase the complexity of the testing proce-
dure and thus make the procedure less effective in practice;
and (ii) due to the improved technologies currently in use
in most engineering applications, it is very rare that many
faults (more than six) will happen simultaneously. Hence,
most historical fault sets will contain a relatively smaller
number of faults which can be handled more efficiently by
the fault signatures based on two fault spaces only.

2.4. The procedures for signature construction
and variation-source identification

Based on the rigorous testing procedure for signa-
ture matching presented in Section 2.2 and the various
signature-construction methods presented in Section 2.3,
systematic variation-source identification can be achieved.
The basic steps are summarized in Fig. 5.

Step 1. The multivariate product-quality measurements
are obtained in the data collection step. The sam-
ple size is assumed to be N and the dimension of
the measurement is m.

Step 2. Based on the quality measurement, we can calcu-
late the sample covariance matrix. From this co-
variance matrix, the number of significant varia-
tion sources can be estimated and tested by the
AIC or MDL criteria introduced in Section 2.1.

Step 3. By matching each fault signature in the fault li-
brary with the new fault covariance matrix, we can
determine the variation sources associated with the
new fault covariance matrix. The testing is based
on Theorem 1 and the three propositions in Sec-
tion 2.3. If no match is found, we must assume that
new variation sources have been found.

Step 4. Two parts are added to the fault library in an up-
date procedure: the fault covariance matrix and its
corresponding fault set identified in Step 3.

Step 5. After we obtain the new fault covariance matrix
and its fault set, we might want to utilize the new
information. From the different type of variation
sources of interest we construct fault signatures for
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Fig. 5. The procedure of variation-source identification.

the new faults or even some new combinations of
historically identified faults. The method for the
construction of fault signatures was introduced in
Section 2.3.

Step 6. After the variation sources are identified, we re-
late the fault directions with the process variables
and attempt to eventually eliminate the variation
sources.

2.5. The false alarm rate of the procedure

There are two stages for the identification of variation
sources: fault detection and fault diagnosis. The procedure
introduced in Section 2.4 includes both fault detection and
fault diagnosis. To evaluate the performance of this method,
we studied the false alarm rate for both of them.

In fault detection, the false alarm rate is the probability
that our method will falsely claim that at least one fault oc-
curred when the system is actually under normal working
condition (no fault occurred). In our proposed procedure,
this false alarm rate is related with the MDL test only. If
the MDL test falsely identified a fault which actually does
not exist, then this is a false alarm. A Monte Carlo simula-
tion was used to evaluate this false alarm rate. We used the
linear model y = Af + ε to generate the sample covariance
matrices and used the MDL test to estimate the number of
faults in the system. A typical parameter setting in prac-
tice was selected in the simulation: the maximal number of
faults in the system was five faults; the dimension of y was
ten; we also assumed a variance of the noise as σ 2

ε = 0.012

and all the eigenvalues of Σf to be equal to 0.0052, which
corresponds to the situation when no fault has occurred in
the system. Without loss of generality, we also assumed that
all the columns of matrix A are orthogonal to one another.
In total, 10 000 cases were simulated. For a sample size of
N = 50, the false alarm rate was equal to a very small value,
0.0005, which shows that the MDL test is quite effective in
fault detection.

In fault diagnosis, we already know there are fault(s) in
the new sample and that the false alarm rate or type-I error
is defined as the probability of incorrectly identifying the
existing fault(s). The overall type-I error of the diagnosis
includes both the errors in the MDL tests (the probability
that we falsely estimate the total number of faults in the
system) and the errors in the hypothesis testing for fault

signature matching (the probability that we did not cor-
rectly identify the fault when the fault actually occurred).
It is very difficult to obtain analytical results on the overall
type-I error. To demonstrate the effectiveness of the pro-
posed procedure, Monte Carlo simulation was again used.
The parameter setting used here is the same as that used in
the previous fault detection case except that an extra pa-
rameter σ2

p/σ
2
ε was specified, where σ2

p is the variance of
the occurring process fault. It is easy to understand that a
larger value of σ2

p/σ
2
ε will differentiate the fault from the

noise better and thus give a smaller type-I error of the hy-
pothesis test. Hence, we denote SNR ≡ σ2

p/σ
2
ε as an im-

portant factor in the simulation. Intuitively, the value of
SNR can be viewed as the signal to noise ratio in the sys-
tem. For the sake of simplification, we also assumed that
all the sample covariance matrices and the fault signature
matrices share the sample size N and SNR in each case.
However, this is not a limitation of the testing procedure.
In total, 5000 cases were simulated for each type of fault
signature. Assuming that the fault covariance matrix S0 is
the signature matrix of fault {1}, fault covariance matrix
S1 is the signature matrix of fault {1,2}, fault covariance
matrix S2 is the signature matrix of {1,3}, and fault covari-
ance matrix S3 is the signature matrix of fault {2}, we have
<S0, A>, <S1, S2, B> and <S1, S3, C> as the type-A sig-
nature, type-B signature and type-C signature of fault {1},
respectively. For the type-A signature, we generated a new
covariance matrix Snew that contained fault {1,2}. If the
testing procedure cannot correctly estimate the number of
faults in S0 and Snew or cannot correctly identify that Snew
contains fault {1}, then it will be marked as an error case.
The false alarm rate for the testing procedure of this type-A
signature is calculated by the total number of error cases di-
vided by 5000. Similarly, the new covariance matrices Snew
for type-B and type-C signatures are the covariance matri-
ces that contain faults {1} and {1,3} respectively. The false
alarm rate for each type of fault signature is presented in
Table 1.

Remark 4. In general, the false alarm rates of the test-
ing procedures are: type-A fault signature < type-C fault
signature < type-B fault signature. This result is reason-
able because more hypothesis tests are used for type-B fault
signature matching.
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Table 1. False alarm rate for each type of fault signature in the simulation

α

Signature type N SNR α1 = 0.01 α1 = 0.02 α1 = 0.03 α1 = 0.04 α1 = 0.05

A 50 10 0.437 0.456 0.469 0.480 0.491
20 0.051 0.069 0.086 0.106 0.119
50 0.039 0.059 0.077 0.092 0.108

100 10 0.060 0.074 0.090 0.105 0.121
20 0.022 0.043 0.059 0.074 0.084
50 0.026 0.040 0.056 0.070 0.081

200 10 0.019 0.030 0.042 0.057 0.070
20 0.017 0.031 0.043 0.054 0.064
50 0.013 0.026 0.040 0.052 0.060

B 50 10 0.699 0.716 0.734 0.747 0.759
20 0.113 0.158 0.192 0.222 0.250
50 0.092 0.134 0.174 0.201 0.230

100 10 0.120 0.161 0.190 0.216 0.241
20 0.058 0.090 0.123 0.147 0.176
50 0.049 0.086 0.116 0.143 0.170

200 10 0.044 0.076 0.103 0.127 0.149
20 0.036 0.063 0.085 0.108 0.134
50 0.033 0.060 0.087 0.115 0.138

C 50 10 0.663 0.673 0.683 0.691 0.697
20 0.061 0.083 0.102 0.123 0.137
50 0.045 0.064 0.084 0.100 0.117

100 10 0.081 0.098 0.112 0.124 0.135
20 0.022 0.037 0.050 0.061 0.073
50 0.021 0.036 0.048 0.063 0.075

200 10 0.018 0.033 0.048 0.062 0.075
20 0.019 0.029 0.041 0.053 0.065
50 0.018 0.029 0.040 0.054 0.066

∗α1 is the type-I error specified on the hypothesis test in Theorem 1.

Remark 5. As the sample size N increases the false alarm
rate decreases, which is consistent with the intuitive under-
standing that we are more confident in identifying the faults
given more information about the data.

Remark 6. When the fault magnitude (represented by the
SNR value given in the table) is small (SNR < 50 in this
case), a larger fault magnitude generally will have a smaller
false alarm rate in the fault diagnosis. This is also reasonable
since a larger SNR value tends to differentiate a fault from
the noise. However, if the fault magnitude becomes very
large (SNR>50 in this case), it may not have much influence
on the false alarm rate.

Remark 7. For SNR = 10 and N = 50, the false alarm rate
presented in the table is very large which makes the pro-
posed procedure ineffective. From a close examination of
the simulation results, we found that the type-I error for
the proposed hypothesis test is still very small whereas the
type-I error of the MDL test contributes to more than 90%
of the large false alarm rate. Hence, we should avoid a small
sample size when the fault magnitude is not very large. If
an alternative test to the MDL test can be found that is able
to provide a more reliable estimate of the number of faults,

the proposed procedure in this particular case can still be
used. This is an area of future research.

It should be pointed out that it is unsafe to draw very
general conclusions from one simulation case. However, be-
cause the simulation is a typical case in practice, it is reason-
able to conclude that the proposed method is an effective
method in many engineering applications. Furthermore, as
a rule of thumb for most practical situations, when SNR >

20 or the sample size is ten times the dimension of y (in this
simulation case N > 100), the proposed method has a good
performance.

In the next section, a comprehensive case study is pre-
sented to illustrate the utilization of the proposed technique.

3. Case study

3.1. Introduction to the process

In this case study, a machining process is adopted to illus-
trate the effectiveness of our proposed method. To machine
a workpiece, we need first to locate the workpiece in a fixture
system and then mount the fixture system on the working
table of the machining center. The position of the cutting
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Fig. 6. Illustration of a machining process: (a) the workpiece; (b) the fixture system; and (c) the machining operation.

tool during cutting is calibrated with respect to the working
table. The process is shown in Fig. 6(a–c).

In Fig. 6(a–c), the workpiece is an automotive engine
component, the fixture system is of 3-2-1 configuration,
and the machine tool is a vertical machining center (only
the cutting tool and the working table of this machining
center are shown in the figure). The 3-2-1 fixturing setup is
widely used in practice, in which there are 3 + 2 + 1 = 6
locating pins. The position and orientation of the workpiece
is fixed in space with respect to the fixture if the workpiece
touches these six pins.

Γ11 =




−0.5402 −0.6455 −0.2664 0.0683 0.5158 0.8555 0.9902 1.1863 1.3106 1.0177 0.6394 0.3403 0.0530 −0.0820 −0.2776
0.9690 0.5991 0.2203 −0.1140 −0.5612 −0.9005 −0.7058 −0.4225 −0.2428 0.1052 0.4597 0.7585 1.0455 0.8192 0.5367
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Γ22 =




−0.6349 −0.4590 −0.0332 0.2510 0.6955 1.0215 1.1372 1.1155 0.9048 0.6472 0.5864 0.3875 0.0777 −0.1490 −0.4063 0.0776
0.9602 0.6817 0.2556 −0.0288 −0.4736 −0.5857 −0.5031 −0.3477 −0.1368 0.1210 −0.0142 0.3998 0.7098 0.9368 0.9339 0.4496
0.6747 0.7773 0.7776 0.7778 0.7781 0.5641 0.3659 0.2322 0.2320 0.2318 0.4279 0.2127 0.2124 0.2123 0.4725 0.4728




T

.

The cutting tool path is calibrated with respect to the
nominal fixturing system. Clearly, an error in the position
of the locating pins will cause a geometric error in the ma-
chined feature. Because of these location pin errors the posi-
tion of the workpiece will deviate from its nominal position.
However, the cutting tool path is still determined with re-
spect to the nominal location of the workpiece. Eventually,
a dimensional error in the workpiece will be induced by the
fixture error. By measuring the position and orientation of
the resulting workpiece quality, the faulty locating pin can
be identified.

For the sake of simplicity, we only consider the identifica-
tion of locating pin faults of simple machining operations
in this case study. The machining operation is illustrated
in Fig. 6(c). In this operation, the cover face of the engine
component is milled. The joint face of the workpiece will
also be milled using this setup. The quality measurements
for this operation are the deviations of 31 points on the
cover face and joint face from their nominal values. The
relationship between the quality measurements and the er-
rors in the locating pins can be described by y = Af + ε. In
this model, y is a 31 by 1 vector that includes the measure-
ment of 31 points. y is in the units of millimeters. f is a 6 by
1 vector that represents the error in the six locating pins of
the fixturing system used for cover and joint face milling. ε

is a 31 by 1 vector that represents the measurement noise. A
CMM is the most common device in practice. Based on the
normal accuracy of a CMM, we select σε = 0.01 mm. The
process normal variation is around 0.05 mm. Furthermore,
for this particular cover face machining operation, A can
be obtained as:

A =
[
Γ1
Γ2

]
,

where

Γ1 = [Γ11 0],Γ2 = [0 Γ22] and :

Please note that the columns of A have not been normalized.
This model is validated in Zhou et al. (2003) and has been
utilized for process fault identification in Zhou et al. (2004).

In this case study, however, this model is assumed to
be unknown. Instead, we use this model to generate dif-
ferent faulty working cases to simulate the machining
operation. The proposed variation-source identification
procedure is applied to these simulated cases to illustrate its
effectiveness.

3.2. Application of the variation-source identification
technique

To demonstrate the proposed variation-source identifica-
tion technique, the following cases are considered. In each
case, the sample size N = 250, the dimension of the qual-
ity measurement m = 31, and σε = 0.01. Cases 1 to 6 will
be demonstrated to identify those variation sources with a
type-A fault signature, cases 7 and 8 will be demonstrated
with the use of type-B and type-C fault signatures, respec-
tively. The type-I error for all of the testing in the case study
is set at 0.05.

In Table 2, σ1, σ2, . . . , and σ6 are the standard devi-
ations of f(1), f(2), . . . , and f(6), respectively. Based on
these parameters, the sample with a sample size of 250 with
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Table 2. The considered cases (cases 1 to 8)

Case

1 2 3 4 5 6 7 8

σ1 0.09 0.08 0.005 0.005 0.005 0.005 0.005 0.005
σ2 0.005 0.08 0.09 0.09 0.005 0.09 0.1 0.005
σ3 0.005 0.005 0.07 0.005 0.08 0.005 0.005 0.005
σ4 0.005 0.005 0.08 0.005 0.005 0.06 0.09 0.09
σ5 0.005 0.005 0.005 0.005 0.005 0.09 0.005 0.08
σ6 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005

workpiece quality measurements y are generated for each
case and the sample covariance matrices are obtained as
S1, S2, . . . and S8. We denote the corresponding population
covariance matries as Σ1,Σ2. . . Σ8. Applying the proposed
identification method leads to the following results. First
we use the MDL criterion to estimate the number of faults
for each fault covariance matrix. The results are listed in
Table 3.

Table 3 lists MDL(l), l = 1, . . . , 5, for cases 1 to 8. The
l that minimizes MDL for each case is the estimated result
of the number of significant variation sources. The result
is listed in the last row. It can be seen that the number
of significant variation sources are correctly identified for
each case. The sample covariance matrices for all of the
eight cases contain a certain number of faults, so all of
them are fault covariance matrices. Based on the number
of faults identified using the MDL criterion, we can use
the developed variation-source identification procedures to
identify the variation sources.

Theorem 1 is intensively used in the variance-source iden-
tification procedure. The various testing results are summa-
rized in Table 4.

In case 1, we have k1 = 1 fault. Since there is no fault
covariance in the fault library, we simply mark the fault
that is detected in S1 as fault {1}. The direction of the fault
is the eigenvector corresponding to its largest eigenvalue.
We put S1 and its corresponding fault set {1} into the fault
library.

In case 2, we have k2 = 2 faults. The value of
dim(F (Σ1) + F (Σ2)) is estimated to be two at a level of

Table 3. The MDL testing results for cases 1–8

Case

1 2 3 4 5 6 7 8

MDL(1) 730.760 6189.368 10 224.591 718.453 650.376 9510.703 9276.650 5258.892
MDL(2) 830.470 807.621 6980.052 827.305 760.555 3871.150 759.455 757.061
MDL(3) 928.074 918.743 896.430 938.041 878.681 974.963 858.304 866.459
MDL(4) 1037.350 1030.352 997.982 1045.741 995.865 1076.330 975.581 978.034
MDL(5) 1143.464 1137.613 1091.076 1155.049 1107.230 1181.825 1086.291 1087.080
Number of faults 1 2 3 1 1 3 2 2

0.05. Since dim(F (Σ1)) = 1 and dim(F (Σ2)) = 2, we
have dim(F (Σ1) ∩ F (Σ2)) = dim(F (Σ1)) + dim(F (Σ2))
− dim(F (Σ1) + F (Σ2)) = 1. Obviously, S1 and S2 share
one common fault. There is only one fault (fault {1}) in S1,
so fault {1} should also be contained in S2 as well. And
we further claim a new fault is detected in S2 and mark
this new fault as fault {2}. S2 is stored in the fault library
for later use and we denote its corresponding fault set as
{1, 2}.

In case 3, we have k3 = 3 faults. We have only two
fault covariance matrices in the fault library. The value
of dim(F (Σ1) + F (Σ3)) is estimated as being four. Thus,
dim(F (Σ1) ∩ F (Σ3)) = dim(F (Σ1)) + dim(F (Σ3)) −
dim(F (Σ1) + F (Σ3)) = 1 + 3 − 4 = 0. There is
no common fault shared between S1 and S3. In an-
other words, fault {1} is not contained in S3. Fur-
thermore, dim(F (Σ2) + F (Σ3)) is estimated as being
four. Hence, we have dim(F (Σ2) + F (Σ3)) = 4 and then
dim(F (Σ2) ∩ F (Σ3)) = 2 + 3 − 4 = 1. Therefore, S2 and
S3 share one common fault. BecauseF (Σ1) ∩ F (Σ3) = φ ,
the common fault shared between S2 and S3 should be in
a subset of F (Σ2) ∼ F (Σ1). Because only fault {2} is con-
tained in F (Σ2) ∼ F (Σ1), the common fault shared be-
tween S2 and S3 should be fault {2}. Finally, we identified
that fault {2} is contained in S3. In addition, the total num-
ber of unidentified faults in S3 is equal to dim(F (Σ3)) – 1 =
3 – 1 = 2 and we claim the other two faults in S3 are new
faults. We mark these two new faults as fault {3} and fault
{4}, respectively. Finally, the fault covariance matrix S3 is
put into the fault library together with its fault set identified
as {2, 3, 4}.

In case 4, we have only k4 = 1 fault in S4. First, the value
of dim(F (Σ1) + F (Σ4)) is estimated as being two. Then
dim(F (Σ2) + F (Σ4)) is estimated as being two and thus
dim(F (Σ2) ∩ F (Σ4)) = 1, which shows that there is one
common fault shared between S2 and S4. Furthermore, the
common fault should be a subset of F (Σ2) ∼F (Σ1). Using
similar logic to case 3, we conclude fault {2} is contained
in S4. Since dim(F (Σ4)) = 1, we stop and store S4 and its
corresponding fault set {2} into the fault library.

In case 5, we still have only k5 = 1 fault in S5. First,
the value of dim(F (Σ1) + F (Σ5)) is estimated as being
two and thus dim(F (Σ1) ∩ F (Σ5)) = 0, which means



352 Jin and Zhou

Table 4. The hypothesis testing results of the dimension of the sum of fault spaces

Critical Estimated
Case Null hypothesis s Ts vs value χ2

0.95,vs
dimension

2 H0: dim(F (Σ1) + F (Σ2)) = s(2 ≤ s <3) 2 33.5960 29 42.5570 2
3 H0: dim(F (Σ1) + F (Σ3)) = s(3 ≤ s <4) 3 15 115 28 41.3371 4

H0: dim(F (Σ2) + F (Σ3)) = s 3 16 619 56 74.4683 4
(3 ≤ s ≤ 5) 4 17.2230 27 40.1133 4

4 H0: dim(F (Σ1) + F (Σ4)) = s(1 ≤ s <2) 1 20 562 30 43.7730 2
H0: dim(F (Σ2) + F (Σ4)) = s(2 ≤ s <3) 2 30.2360 29 42.5570 2

5 H0: dim(F (Σ1) + F (Σ5)) = s(1 ≤ s <2) 1 18 850 30 43.7730 2
H0: dim(F (Σ2) + F (Σ5)) = s (2 ≤ s <3) 2 18 793 29 42.5570 3
H0: dim(F (Σ3) + F (Σ5)) = s(3 ≤ s <4) 3 24.7853 28 41.3371 3

6 H0: dim(F (Σ1) + F (Σ6)) = s(3 ≤ s <4) 3 19 540 28 41.3371 4
H0: dim(F (Σ2) + F (Σ6)) = s(3 ≤ s <5) 3 25 314 56 74.4683 4

4 29.6509 27 40.1133 4
H0: dim(F (Σ3) + F (Σ6)) = s(3 ≤ s <6) 3 17 529 84 106.3948 4

4 62.4987 54 72.1532 4
H0: dim(F (Σ5) + F (Σ6)) = s(3 ≤ s <4) 3 22 230 28 41.3371 4

7 H0: dim(F (Σ3) + F (Σ7)) = s(3 ≤ s <5) 3 59.9664 56 74.4683 3
H0: dim(F (Σ6) + F (Σ7)) = s(3 ≤ s <5) 3 70.2294 56 74.4683 3
H0: dim(F (Σ3) + F (Σ6) + F (Σ7)) = s (3 ≤ s <8) 3 18 422 140 168.6130 4

4 126.3779 108 133.2569 4
8 H0: dim(F (Σ4) + F (Σ8)) = s(2 ≤ s <3) 2 34 543 29 42.5570 3

H0: dim(F (Σ4) + F (Σ6) + F (Σ8)) = s (3 ≤ s <6) 3 101.4221 84 106.3948 3

that no common fault is shared between S1 and S5.
Second, dim(F (Σ2) + F (Σ5)) is estimated as being three
and thus dim(F (Σ2) ∩ F (Σ5)) = 0, which means that
no common fault is shared between S2 and S5. Further-
more, dim(F (Σ3) + F (Σ5)) is estimated as being three and
dim(F (Σ3) ∩ F (Σ5)) = 1, which means there is one com-
mon fault shared between S2 and S5. Since S4 contains only
{2} and we already know that {2} is not contained in S5,
we do not have to check dim(F (Σ4) + F (Σ5)). Because we
know faults {3, 4} are contained in F (Σ3) ∼ F (Σ1) and
F (Σ3) + F (Σ4), we can only conclude that the common
fault between S3 and S5 could be either {3} or {4}. But
we still cannot conclude that the fault contained in S5 is
{3} or {4}. At this stage fault {3} and fault {4} cannot be
differentiated between.

In case 6, we have k6 = 3 faults. First, dim(F (Σ1) +
F (Σ6)) is estimated as being four and thus
dim(F (Σ1) ∩ F (Σ6)) = 0, which means that no com-
mon fault is shared between S1 and S6. Second, because
dim(F (Σ2) + F (Σ6)) is estimated as being four and thus
dim(F (Σ2) ∩ F (Σ6)) = 1, there is one common fault
shared between S2 and S6. By the same logic used in case
3, we know that {2} is contained in S6. Furthermore
dim(F (Σ3) + F (Σ6)) is estimated as being four and thus
dim(F (Σ3) ∩ F (Σ6)) = 2, which means there are two com-
mon faults shared between S3 and S6. Since S4 contains
only {2} and we already know that {2} is contained in S6,
we do not have to check dim(F (Σ4) + F (Σ6)). Finally,
we check dim(F (Σ5)+F (Σ6)) and get a value of four
and thus dim(F (Σ5)∩F (Σ6)) = 0. There is no common

fault shared between S5 and S6. If we mark the common
fault shared between S3 and S5 as {3}, then {3} is not
contained in S6. Now we have F (Σ3) ∼ F (Σ5) = {2, 4},
and we conclude that {2} and {4} are contained in S6.
Because we have already exhausted all of the existing fault
labels in the existing fault covariance matrices and find
only two historical faults (fault {2} and fault {4}) in S6.
We claim a new fault occurred and mark it as {5}. Hence,
the fault set of S6 is {2, 4, 5}. It is important to note that
although fault {3} and fault {4} cannot be differentiated
in the previous cases, they are clearly identified from now
on. This example shows that not only can historical fault
information help us in fault identification; but also that
future fault information might also contribute to the
identification of historical faults.

Cases 7 and 8 are used to illustrate the applications of
type-B and type-C fault signatures.

In case 7, we have k7 = 2 faults. We use a type-B
fault signature. Assume that we use a type-B signature
of <S3, S6, B>. First we test dim(F (Σ3) + F (Σ7)) and
get a value of three and thus dim(F (Σ3) ∩ F (Σ7)) = 2.
Second, we test dim(F (Σ6) + F (Σ7)) and get a value of
three and thus dim(F (Σ6) ∩ F (Σ7)) = 2. Third, we test
dim(F (Σ3) + F (Σ6) + F (Σ7)) and get a value of four.
Last, we check dim(F (Σ3) + F (Σ6)) and get a value of
four and faults 2 and 4 are contained in F (Σ3) ∩ F (Σ6).
From Proposition 2, we can check k0 = dim(F (Σ7)) −
dim(F (Σ3) + F (Σ6) + F (Σ7)) + dim(F (Σ3) + F (Σ6)) =
2, and thus k0 + F (Σ3) ∩ F (Σ6) = 4 and equal to
dim(F (Σ3) ∩ F (Σ7)) + dim(F (Σ3) ∩ F (Σ6)). Hence, we
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conclude faults {2} and {4} are contained in S7. Since
k7 = 2, the fault set of S7 is {2,4}.

In case 8, we have k8 = 2 faults. We will use a type-
C fault signature. Assume we use <S6,S4,C> as the
type-C signature. First we test dim(F (Σ4) + F (Σ8)) and
get a value of three and thus dim(F (Σ4) ∩ F (Σ8)) = 0.
Second, we test dim(F (Σ4) + F (Σ6) + F (Σ8)) and get a
value of three. From Proposition 3, the fault set that
corresponds to F (Σ6) ∼ F (Σ4) is equal to {4, 5}. Be-
cause dim (F (Σ8)) − dim(F (Σ4) + F (Σ6) + F (Σ8)) +
dim(F (Σ4) + F (Σ6) = 2 and is also equal to dim(F (Σ4) ∩
F (Σ8)) + dim(F (Σ6) ∼ F (Σ4)), we conclude faults
{4,5} are contained in S8.

From the above case studies, we can see that the variation-
source identification method developed in this paper is ef-
fective and easy to use. The testing procedure for cases 7
and 8 seems more complicated than the testing procedure
for cases 1 to 6. However, the use of type-B and type-C fault
signatures in those two cases may provide a better utiliza-
tion of the historical data.

4. Concluding remarks and directions of future study

This paper presented a variation-source identification
methodology. The major characteristic of this method is
that it does not require a predefined model that links the
system measurements and the variation sources. Instead,
the method utilizes quality measurement data through the
analysis of the eigenspace of the covariance matrices to
identify the variation sources. The key steps of the method
are the testing of a common part of the eigenspace among
multiple covariance matrices and a systematic way to con-
struct fault signatures by applying the testing procedures. A
numerical case study is conducted to illustrate the effective-
ness of this method. This method can be used in quick root-
cause identification of a manufacturing process, which will
lead to product quality improvement, production down-
time reduction, and hence cost reductions in manufacturing
systems.

This paper opens a new direction in variation-source
identification technologies. There are still several very inter-
esting open issues related with this method. The first issue
is the assumption on the system noise term ε. In this paper,
we assume its variance is of the form of σ 2I. Although many
practical systems can satisfy this requirement (e.g., a sys-
tem that is very close to linear and the same measurement
device being used to measure all the system outputs), some
systems (particularly systems with severe nonlinearities) do
not have this property. In that case, we have to assume a
general form for the covariance matrix of ε. How this gen-
eral form of the covariance matrix structure will impact on
the performance of the testing procedure is not clear. This
problem is currently under investigation. The second issue
is the impact of sample size. In the case study we have a rela-
tively large sample size (N = 250). The testing procedure of

Schott (1999) requires a large sample size to have good per-
formance. Bartlett corrections (Jensen, 1993; Cribari-Neto
and Cordeiro, 1996; Schott, 1999) have been recommended
for smaller sample sizes. More recently, Schott (2003) pro-
posed an alternative testing statistic which is claimed to have
a better performance than that of Schott (1999) for small
sample sizes. The performance of the developed method
could be improved if the new testing method is adopted. The
third issue is the continuous improvement of the fault signa-
ture. As the number of fault covariance matrices grows, the
same fault or fault sets could have multiple signatures. How
to combine those multiple signatures together to improve
the testing power of the common eigenspace is a very inter-
esting problem. The results on this issue will be reported in
the near future.
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Appendix

Proof of Theorem 1. The main steps of the proof follow
those of the proof in Schott (1999). In Schott (1999), the
author has proved the following results: given g samples of
m variables of normally distributed quality measurements,
the sample and population covariance matrices of these g
samples are Si and Σi (i = 1, 2, . . . , g), and each sample
covariance matrix needs k principal components to explain
the major variations in each group. If H0s is true, then Ts
has a chi-squared distribution with vs =(kg − s) (m − s)
degrees of freedom, where Ts is defined in Equation (5).
By the definition of the fault vectors and fault space, this
result is very similar to Theorem 1 except that it requires
that all of the sample covariance matrices have the same
number (k) of principal components to explain the major
variations. However, this is not a severe limitation of this
derivation. After replacing k and gk with ki and

∑g
i=1 ki

respectively, similar derivations can be obtained to prove
Theorem 1. Another difference is that we used max(ki) as
the lower boundary of s in Theorem 1. The rationale is that
the sum fault space spanned by all of the fault vectors of
covariance matrices should have its dimension greater than
or equal to the maximal dimension of each individual fault
space provided that all of the faults contained in a fault
covariance matrix are independent. �
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