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An SPC Monitoring System for Cycle-Based
Waveform Signals Using Haar Transform

Shiyu Zhou, Baocheng Sun, and Jianjun Shi

Abstract—Due to the rapid development of computer and
sensing technology, many measurements of process variables are
readily available in manufacturing processes. These measurements
carry a large amount of information about process conditions. It
is highly desirable to develop a process monitoring and diagnosis
methodology that can utilize this information. In this paper, a
statistical process control monitoring system is developed for a
class of commonly available process measurements—cycle-based
waveform signals. This system integrates the statistical process
control technology and the Haar wavelet transform. With it, one
can not only detect a process change, but also identify the location
and estimate the magnitude of the process mean shift within the
signal. A case study involving a stamping process demonstrates
the effectiveness of the proposed methodology on the monitoring
of the profile-type data.

Note to Practitioners—Cycle-based signal refers to an analog or
digital signal that is obtained through automatic sensing during
each operation cycle of a manufacturing process. The cycle-based
signal is very common in various manufacturing processes (e.g.,
forming force in stamping processes, the holding force, and the cur-
rent signals in spot welding processes, the insertion force in the en-
gine assembly process). In general, cycle-based signals contain rich
process information. In this paper, cycle-based signal monitoring
will be accomplished by monitoring the wavelet transformation of
the signal, instead of monitoring the raw observations themselves.
Further, a decision-making technique is developed using the SPC
monitoring system to locate where the mean shift occurred and
to estimate magnitudes of mean shifts. Thus, this paper presents
a generic framework for the enhanced statistical process control
technique of cycle-based signals.

Index Terms—Cycle-based waveform signals, Haar transforma-
tion, multivariate control charts, wavelet analysis.

1. INTRODUCTION

UE to the rapid development of sensing and computing

technologies, many process variables are often measured
in manufacturing processes. We consider the cycle-based wave-
form signals in discrete part manufacturing processes. As the
name implies, a cycle-based waveform signal is an analog or
digital signal that is obtained through automatic sensing during
each operation cycle of a manufacturing process. Cycle-based
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waveform signals exist in many kinds of manufacturing pro-
cesses (e.g., forming force in stamping processes, the holding
force, and the current signals in spot welding processes, the in-
sertion force in the engine assembly process). Fig. 1 illustrates
the forming force (tonnage) signal in a stamping process.

These signals are measured during production cycles. The
cycle-based waveform signals possess some interesting charac-
teristics: 1) Within one cycle, the characteristics of the signal at
different signal segments change significantly. For example, it
is obvious that the frequency content of the segment between
90° ~ 180° is quite different from that of the segment 180° ~
270° in the cycle-based signal shown in Fig. 1. The reason is that
different segments of the cycle-based signal often correspond
to different stages of the operation in one production cycle. 2)
Between cycles, the signals are similar to each other but with
some variation. This can be clearly seen from Fig. 1(b), the ton-
nages of these two cycles are aligned together according to the
forming angle to illustrate the similarities and variation between
these two cycles.

A cycle-based signal can be viewed as a high-dimensional
multivariate random vector. In Fig. 1, each cycle-based signal
contains 280 observation points. Therefore, the cycle-based
signal can be viewed as a 280-dimensional random vector.
Clearly, the components of the random vector are highly corre-
lated. On the other hand, the variation between different signals
is inevitable, which reflects the natural process variations due to
the effects of inherent process disturbance factors, such as the
randomness of lubrication distribution and material uniformity,
etc. Under the same operational conditions, the disturbances
of the process often do not change. Therefore, the signals of
different cycles can be viewed as identically distributed sam-
ples of the random vector. Furthermore, the cycle-based signals
are from discrete manufacturing processes. The time intervals
between two production cycles are often much longer than
the time constant of the process dynamics [1]. Therefore, the
distribution of cycle-based signals can be assumed independent
identically distributed (iid). The cycle-based signal contains
a large amount of process-related information. Monitoring
of cycle-based signals is a very interesting, yet challenging
problem.

Some research has been done on the analysis and monitoring
of waveform signals. The monitoring problem of linear profiles,
which can be viewed as the simplest waveform signals, has been
addressed in [2]-[5]. Jin and Shi [6] proposed an automatic di-
agnostic system for waveform signals. A training data set is re-
quired for the proposed method. Functional data analysis (FDA)
[7] is a class of analysis methods that focuses on the analysis
of “functional” data. FDA consists of data-analysis techniques
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Fig. 1.

such as Fourier transformation, wavelet analysis, and functional
principal component analysis, etc. Since a cycle-based wave-
form signal can be viewed as functional data, techniques from
FDA can be applied to the cycle-based signal analysis. Actually,
the method proposed in this article can be viewed as a special
case in the FDA arena.

In this paper, the wavelet transforms will be used to repre-
sent the cycle-based waveform signals. The process monitoring
will be accomplished by monitoring the wavelet coefficients, in-
stead of monitoring the observations themselves. The wavelet
transform is a very powerful tool in signal processing, which
has been applied in various science and engineering fields with
great success. In general, wavelet transforms are procedures that
divide the data into both different time and frequency compo-
nents. They have advantages over the traditional Fourier trans-
form in analyzing signals with discontinuities and sharp spikes.
Wavelet transformation particularly fits the needs of the analysis
of cycle-based waveform signals. Comparing with other ana-
lytical bases, such as the Fourier bases, polynomial bases, etc.,
wavelet basis is designed to capture these localized features and
the abrupt changes in the signals. Compared with the empir-
ical bases, it is often easier to interpret the physical meanings
of the wavelet coefficients. Based on the physical meaning, we
can not only detect the changes in the signals, but also identify
the location and possibly root causes of the changes. Hence, the
monitoring of cycle-based waveform signal using wavelet trans-
formation is preferable to other transformation methods.

Wavelet transformation has been used for process fault de-
tection. The multiscale principal component analysis (MSPCA)
method is proposed for the monitoring of continuous chemical
processes [8], [9]. In MSPCA, PCA is conducted on the wavelet
coefficients of each scale of a windowed sample of continuous
processes. Then, the appropriate number of loadings of PCA
and the wavelet coefficients are selected for each scale. Then,
the selected coefficients are combined together, PCA is con-
ducted again, and the signal is reconstructed. The final step is to
monitor the process using the PCA of the reconstructed signal.
There are a total of more than ten steps in the whole procedure
[8]. Thus, the MSPCA is a somewhat complicated procedure.

—— Tonnage #1

120 — Tonnage #2 |
1001

Py

=11}

<

=i

=

i)

L 1

45 90

315

135 180 225 270
angle (degree)

(b)

(a) Forging tonnages of two cycles. (b) Overlapped tonnages of two cycles.

Furthermore, although PCA is very effective to detect the major
variation directions in a data set, in some cases, it is difficult
to interpret the physical meanings of the PCs. Most recently,
Lada, et al. [10] developed a wavelet-based procedure for semi-
conductor process fault detection. They focused on the tech-
nique of selecting representing wavelet coefficients and a non-
parametric procedure for detecting process faults based on the
selected wavelet coefficients. Some researchers [11]—[13] have
also used the Haar transform, one of the wavelet transforms, in
fault detection and isolation by incorporating the engineering
knowledge of the process. Wavelet analysis has also to be inten-
sively used in the machine diagnosis based on process dynamic
sensing signals. A group of researchers (Bukkapatnam, et al.
[14]-[17], Suh, et al. [18], and Kamarthi, et al. [19]) have devel-
oped methodologies for chatter control, flank wear estimation,
and machine fault diagnosis based on vibration, cutting force,
and acoustic emission signals. In their work, wavelet analysis,
chaos theory, and neural networks are combined together to par-
simoniously represent the signal and efficiently extract the key
features in the signal.

In this paper, a systematic statistical process control (SPC)
monitoring system is proposed to integrate statistical process
control with the Haar transformation in order to monitor cycle-
based signals for the manufacturing processes. The rationale of
using the Haar transform is discussed in Section II-A. The SPC
system works as follows: 1) A set of cycle-based signals are col-
lected. Each signal contains observations of a process variable
during a production cycle. One cycle-based signal is viewed as
one measurement sample. For the sake of convenience, we as-
sume each signal has 27 (p is a non-negative integer) data points.
2) A Haar transform is applied to each cycle-based signal, and
Haar coefficients are calculated. 3) The total number of Haar co-
efficients is reduced by selecting the “significant” coefficients.
4) These remaining Haar coefficients are used as features of the
process and they are monitored using a Hotelling 72 statistic. 5)
To interpret the T2 chart, each Haar coefficient is monitored by
an individual SPC chart with Bonforroni limits. 6) Based on the
T2 chart and individual charts of wavelet coefficients, an SPC
monitoring “system” can be used to detect the mean-shift oc-
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currence, to identify the location or time of the mean shift, and
to estimate the mean-shift magnitude in the process.

The advantages of this SPC monitoring system are as follows:
1) By selecting the significant wavelet coefficients, the dimen-
sion of the sample vectors is dramatically reduced. Therefore,
the performance of the SPC monitoring system for large dimen-
sional data sets can be significantly improved. 2) By using a
Haar transform and its inherent data structure, this SPC moni-
toring system facilitates the interpretation of 7' statistic.

This paper is organized as follows. In next section, the Haar
transform and its properties are briefly reviewed. Then, the SPC
monitoring system is introduced. The application of the SPC
monitoring system in the stamping tonnage signature moni-
toring is also given to illustrate the proposed SPC monitoring
system. Finally, a summary is given in the last section.

II. SPC MONITORING SYSTEM USING HAAR TRANSFORM
A. Haar Transform and the Notation

The Haar transform is operated based on Haar functions,
which consist of rectangular waves distinguished by time
scaling and time shifts [20]. The set of continuous Haar func-
tions {7 (x)} is periodic, orthogonal, and complete. The
sequence {7 (x)} is defined in [0, 1] as

wo(z) =1, z €[0,1] (M
i b o (mod)

(pn(x) - _2%7 (7;’1 1> < €z < 211 1 (2)
0, elsewhere, Vz € [0,1]

where 7 is the scale of the Haar transform and 1 < m < 271
for n > 1. A function f(z) can be approximated by a partial
sum Sy (z) containing 2V terms, that is

271 1

Sy 00+ZZ% cy 3)

n=1m=1

where C)" is called the mth Haar coefficient in scale n.

Discrete Haar functions are often used in practice. Define p as
the smallest integer such that the number of observations does
not exceed 2% . Discrete Haar functions are obtained by sampling
continuous Haar functions to produce a Haar array denoted by
Hy ,. Each row of Hy,, is a discrete Haar function obtained
by sampling the continuous Haar function {¢""(x)} shown in
(1) and (2). We let h; ; represent the i*® row of Hy ,, which is
generated as

hij=2"2¢(j-277),
where 0 < n < N, N is the scale number we selected, 1 <

m < 2" and i = {an; . XEZE " ! The muli-
plier 277 /2 is used to normalize each row of H N,p- Usually, we
have p > N. Each row of matrix Hy , is orthogonal to each
other.

If x =
crete points,

0o .1 .1 2 .1 2
[607617627627037~-~70N

1<;<2° “4)

[z1 =2 x20]T is a sequence of 2P dis-
then the discrete Haar coefficients ¢ =

T
~'" can be calculated as follows:

c=Hy,x. @)

The approximation of x using the Haar transform X is given
as follows:

x=Hj c. (6)

The Haar coefficients have a relationship with mean values of
the original signal over some intervals, as shown in (7) and (8).
Forn =0

Co =25 7(1,27). @

Forn > 1

om— (p=n=1) [f{( 1)2 7(p— n+1)+1 < l) 2(Pn+1)}
" 2
{< _> p n+1)+17m2(pn+1)}:| (8)

where f(i,7) = (1/(j —i+ 1)) ; z1,. Thus, CY is propor-
tional to the mean of f(z). Every C,’L” except C}, is proportional
to the mean difference in two adjacent intervals.

From the above description, it can be seen that each coeffi-
cient of a Haar wavelet possesses clear interpretation: it is pro-
portional to the mean difference of observations in two neigh-
boring intervals, where the interval can be easily determined by
the scale and translation. Because of this property, the mean shift
of the signal among different segments can be easily calculated
if the Haar coefficients are known. Therefore, the Haar trans-
form fits very well with the control chart monitoring system.
When the Haar transform is used to approximate observations
within a cycle-based signal, possible mean shifts in the orig-
inal signal can be captured by the Haar coefficients. Thus, Haar
coefficients can be used as features to monitor the process for
mean-shift detection and isolation.

B. Multivariate Control Chart Design

We use x; to represent the ith cycle-based signal and {x; }f\;l
for a data set with N, cycle based signals. Each sample of the
cycle-based signal x; = [21,,Z2,..., %20 ;|7 has 2P obser-
vations (p is a non-negative integer). The observations could
be correlated within each cycle-based signal x;, ¢ = 1... N
and we assume the multivariate samples {xi}f\;sl are iid nor-
mally distributed. The rationale behind this assumption is that
the process variable is affected by many random disturbances
existing in the process. Hence, the process variable tends to be
normal due to the central limit theorem. Given the scale of the
Haar transform N, Hy ;, can be obtained by using (4). Then,
Haar coefficients c; can be computed for each sample x; by
using (5). Clearly, the Haar coefficients follow a multivariate
normal distribution because they are linear combinations of nor-
mally distributed random variables from (5). Since the dimen-
sion of ¢; is often much smaller than the dimension of x;, the
T? statistic for the Haar coefficients instead of the signal itself
is used to monitor the process. Thus, we use

T? = (c—¢)'S™(c 7). )

To set up 72 multivariate control charts on the individual ob-
servations, two phases are needed. The production is monitored
in Phase II. The objective in Phase I is to obtain an in-control set

of observations in order to establish the control limits in Phase
1I.
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In Phase I, one significant issue is the robust estimation of co-
variance matrix of ¢, which has been investigated in [21]. Here,
we select the recommended method

1 VIV
T 2N, -1 (10)
where V = [(cz — )T (c3—c2)T ... (en, —cn,—1)T]".

Due to this covariance estimation, the control limits for Phase I
are

N, —1)2

UCL = —( 5 )

LCL =0, (11)

where f = 2(N, —1)?/(3N, —4), and 3, on—1 (f_on _1y/2 is
the upper « percentage point of a beta distribution with param-
eters 2Nt and (f — 2V — 1)/2.

In Phase II, the control limits are [21]

/B 1 (f—2N-1
Ns aon—1 U2 1)

UCL = 2" (N2 - 1) F
TNz 2NN,
LOL =0 (12)

where F, o~ n__on~ is the upper a percentage point of an F’ dis-
tribution with parameters 2N and N, s — 2N In Phase 11, the co-
variance is estimated using the sample covariance matrix based
on the in-control data points from Phase I

1 &

N —i > (ci—e)(ci—2)".

i=1

S:

(13)

By specifying Type-I error probability «, the 72 statistics
based on Haar coefficients can be used to monitor the process.
To implement this T? chart using the Haar transform, some
practical issues need to be discussed.

C. Practical Issues in the Haar Transform

1) Scales to be Used in the Haar Transform: The problem
of selecting scales is actually the problem of selecting the suffi-
cient number of coefficients to represent the cycle-based signal.
Based on the selected scale, a small number of wavelet coef-
ficients are used to represent the original signal in the process
monitoring step. This step is a very important step and several
researchers have been working in this area. Jin and Shi [22] pro-
posed a wavelet feature selection technique by integrating ex-
tensive engineering knowledge of the process. Bukkapatnam et
al. [23] developed a wavelet packet representation of chaotic
dynamic signals. Their method is for wavelet function design
rather than wavelet coefficient selection. Lada et al. [10] and
Pittner and Kamarthi [24] developed coefficient selection tech-
niques based on the magnitude of the coefficients and a penalty
on the number of coefficients.

In this paper, the selected coefficients are used for process
monitoring using control charts techniques. To be successful, it
is critical to not blur the difference between the in-control dis-
tribution and the out-of-control distribution in this step. If ex-
tensive information on both in-process (normal) distribution and
out-of-control (abnormal) distribution is known, the coefficients
can be selected to maximize the detection power under the same
false alarm probability. However, in practice, the information,
particularly the information of the out-of-control distribution, is
quite difficult to obtain. In this paper, we propose a simple yet

effective scale selection scheme based on limited information
on the out-of-control distribution.

In this paper, we focus on the detection of the mean shifts
or so-called “shape change” within the cycle-based waveform
signal at certain intervals. Further, we assume that the interval
of mean shift is large. These assumptions are determined by the
requirement of specific processes (please refer to Section III).
Based on this limited information regarding the out-of-control
distribution, the coefficient selection is designed to select the
coefficients of certain scales starting from the lowest scale of
the wavelet transformation. Because the higher the scale used,
the smaller the region of support for each Haar function in that
scale; the very high scale coefficients can be ignored based on
our information of the out-of-control distribution. This is the
reason why we start from the lowest scale. Furthermore, the co-
efficients selected in this way can also simplify the interpreta-
tion of out-of-control points and the decision making procedure,
which will be more clear in Sections II-D and II-E. The coeffi-
cient selection procedure is described as follows.

An index @); is defined to describe the satisfactory accuracy
requirement by using the Haar transform for the sample of
cycle-based signal x;, that is
_ I = %q)?

Qi =
SRR

where || e || is the Euclidean norm of a vector and X; is the
approximation of x; using Haar transform with scale N.

It can be seen that the smaller the (); value, the better the
fitting performance using the Haar transform for x;. If N, sam-
ples are obtained for the process, given a satisfactory accuracy
requirement (), the Haar transform scale NV used in a SPC mon-
itoring system can be determined as follows:

N = min(M|max @Q; < Q)

(14)

5)

where Q); is calculated by using (14) with Haar coefficient scale
M for the ith sample x;(1 < ¢ < Ny). This means that the scale
N is the minimum scale level such that for all of the samples,
Qi < Q.

In the above scale level selection procedure, () is often pre-
determined by the process and the signal characteristics. For ex-
ample, if we know the mean shift happens within a interval of
half the total length and the mean-shift magnitude is more than
10% of the signal magnitude, then the worst-case scenario of
Q is to set () as 5%. In the worst case, all of the signal change
is captured by the high-scale wavelet coefficients that are ig-
nored. However, this is the worst-case scenario because if the
mean-shift interval is large, it is impossible that this mean shift
will be only captured by high-scale coefficients. Therefore, the
5% value for @ will be sufficient. With other particular infor-
mation regarding the out-of-control distribution, we can develop
different schemes for wavelet coefficient selection.

To use this 72 chart, we also need to check the effectiveness
and adequacy of the coefficient selection in the statistical sense.
Thus, similar to the @ statistic in principal component approach
[25], the sum of squares of the residuals (SSR) in the coefficient
selection should be checked. The SSR; for the ith sample can
be calculated as

SSRl = (Xi — )A(i)T(Xi — )A(Z) (16)
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where SSR; should be less than a prescribed threshold to ensure
the effectiveness of the coefficient selection. Because the ana-
Iytical distribution of SSR is very difficult to obtain, a nonpara-
metric estimation method is used to estimate the distribution of
SSR based on data. The threshold can be obtained based on the
estimated distribution of SSR.

2) Signal Length Other Than a Power of Two: The discrete
wavelet transformation is defined for sequences with a length
of a power of two. Special measures need to be taken for other
signal lengths. In practice, one straightforward treatment is to
manipulate the original signal length by deleting certain signal
segments that do not contain useful information. The selection
of these signal segments should be based on the engineering
knowledge of the operation stages of each cycle. For example,
the forming force signal of stamping or forging processes often
includes the sensor signals before the die hits the workpiece.
Clearly, very little information is available in such a signal seg-
ment. Therefore, it is safe to delete that segment from the orig-
inal signal to make the final length of the signal some power of
two. If no signal segment can be safely deleted and the signal
length is very close to some power of two, we can interpolate
the original signal to change its length. The assumption of this
method is that the signal is smooth and the interpolation will
cause limited distortion of features of the signal, particularly,
the features of interest.

Some researchers have proposed several methods for ex-
tending the signal length [26]: 1) zero-padding, in which zeros
are added at the end of the signal; 2) symmetrization, in which
the symmetric replications of the original signal around the end
of the signal are used to extend the signal; 3) smooth padding,
in which the extrapolation of the signal is used; and 4) peri-
odic-padding, in which the periodic extension is used outside
the original support of the signal. Although zero padding is the
simplest extension method, it creates artificial discontinuities at
the end of the signal. However, this discontinuity will only show
up at very high scales. For the mean-shift detection purpose,
the impact of zero-padding is limited. Therefore, zero-padding
can still be considered in our case. The detailed discussion
of extending the signal and corresponding impacts in wavelet
transformation is out of the scope of this article. Interested
readers can refer to [26] for more details.

3) Signal Alignment: A problem with the ordinary discrete
wavelet transformation is its time-variant property (i.e., the
coefficients of a delayed signal are not a time-shifted version
of those of the original signal). This property is particularly
troubling in the process monitoring and diagnosis application.
The errors in the signal alignment will cause differences in
the wavelet coefficients because of this time-variant property.
Therefore, signal alignment is critical for the application of
wavelet analysis.

Fortunately, signal alignment is not an issue for many
cycle-based waveform signals because many of them can be
naturally aligned. For example, the tonnage in stamping and
forging are often sampled according to the crank angle of the
press. They are crank angle indexed. We can just align the
signal using the crank angle. In the engine head assembly
process, the assembly force is sampled according to the relative
distance of two mating parts. Thus, the signal alignment is also

Fig. 2. Hierarchical structure of the SPC monitoring system.

trivial for those cases. For the time-indexed cycle-based signal,
a repeatable trigger can be used to identify the repeatable
starting point of the signal. If such a trigger is not available, a
data-driven method should be used. In FDA, signal alignment
is called “functional data registration.” The Newton—Raphson
algorithm is used for the estimation of alignment. Registration
can also be done using signification features or landmarks.

D. Interpretation of Out-of-Control Signals

One challenge of the operation of the T2 chart is the inter-
pretation of the out-of-control point. Some work has been done
on the interpretability of 7' statistics. Murphy [27] proposed a
procedure to identify the subset of variables, which account for
a substantial portion of the observed value of the T statistic.
This procedure involves repeated calculation of the 7' statistic
by successively deleting various subsets of the variables from
the computations. However, the performance of this approach
regarding identification of the out-of-control variables becomes
worse when the variables are correlated. With the 7% decompo-
sition approach [28], [29], one decomposes the T? statistic into
individual components. Each decomposed component provides
information about the variables that significantly contribute to
an out-of-control signal.

Univariate control charttechniques can alsobe used to interpret
the out-of-control points in the 72 chart of Haar coefficients. The
Haar coefficient c; is a linear transformation of x; by (5). Since
x; and X;, 1 # j, are assumed to be iid normally distributed,
c;, ¢j, and 7 # j are also iid normally distributed. Thus,
Shewhart-type charts can be used to monitor each individual
coefficient. There will be 2V control charts, each of them
monitors the mean shift at different intervals of the cycle-based
signal. These 2% control charts can be organized together in
a hierarchical structure to form an SPC monitoring system,
which is shown in Fig. 2. In manufacturing applications, a
few charts of low-scale Haar coefficients will be sufficient for
process monitoring.

Bonferroni’s inequality approach is used by Alt [30] to
interpret the out-of-control signal based on the individual control
charts. In consideration of all the existing methods, Bonferroni’s
approach is chosen for out-of-control interpretation in our
paper because it is very effective in detecting large mean
shifts. On the other hand, when the dimension of variables
is dramatically reduced using a Haar transform in the SPC
monitoring system, Bonferroni control limits for each variable
will become narrower than that based on the original signal.
Thus, the dimension reduction based on the Haar transform
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Fig. 3. Tllustration of interval D¢ .

in this SPC monitoring system also facilitates the Bonferroni
approach.

When Hotelling 72 chart in the SPC monitoring system indi-
cates an out-of-control condition, each C? will be checked for
in control or out of control. Bonferroni’s control limits are used
for each C}; control chart, which are shown as follows:

CLc; =c;
UCL, = ﬂcf} + Zl_‘;l oci
LCLe: =fici — Zev b (17)

where C'L¢: is the central line, UC L is the upper control
limit, and LCLC1 is the lower control 11m1t The value o7 is a
preselected overall Type I error probability. We have p = 2N,
Also, ucq and 6¢: are the estimated mean and standard devia-
tion of C” respectlvely Since each Haar coefficient is a linear
combination of a set of segments of the original signal, its sta-
tistical properties are determined by the original signal and its
region of support. The mean vector is estimated by

1 &
_E;Ci

and the covariance matrix of c is estimated using (13).

It should be pointed out that Bonferroni’s control limits for
each Haar coefficient are used only for the interpretation of
out-of-control 1'% statistics. The monitoring system Type I error
probability has already been specified to be a; in the Hotelling
T? chart for the Haar coefficients. There is a possibility that
when the T2 statistic indicates an out-of-control condition, all
of the Haar coefficient control charts, however, indicate in-con-
trol. In this case, the individual control charts fail to interpret the
out-of-control signals.

It can be seen from (7) that C§ is proportional to the
mean value of each cycle-based signal. Thus, the CJ chart
is equivalent to the conventional Shewhart-type chart for the
mean. It has been shown in (8) that every Cfl, except Cg, is

(18)

< 0

B 1% half o nd palf "7

< »le - > D

1% quarter 2" quarter l D!
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o 3" quarter 4™ quarter 22

il - D
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' || 1/8 | 1/8 D*;

|| 1/8 | 1/8 D;

—>|e—»| D]

proportional to the mean difference of observations in two
adjacent intervals within a cycle. Thus, C charts, except the C§
chart, monitor how the process mean changes at two subintervals
within a cycle-based signal. As a result, the control charts
for individual wavelet coefficients are inherently related in
terms of their corresponding intervals. These interrelationships
provide important information that can be used to determine
mean-shift locations and their magnitudes. As a result, this SPC
monitoring system can provide additional information that is
not available in the conventional X chart and the Hotelling 7"
chart. When some mean shifts occur in certain positions of the
cycle, the corresponding C? charts will respond. By checking
and analyzing the out-of-control charts, possible locations of
mean shifts can be found. In this way, the proposed SPC
monitoring system is used for not only process monitoring
but also for the detection of the location of process change.

E. Decision-Making Methodology of SPC Monitoring System

If the 7" chart for the Haar coefficients shows an out-of-con-
trol condition and the SSR chart shows an in-control condition,
the SPC monitoring system is used to check which Haar coef-
ficients are statistically out of control. Because of the special
interrelationships among the Haar coefficients, in this section,
we develop the decision-making methodology for the proposed
SPC monitoring system to identify the locations (or occurrence
times) of mean shifts in the cycle-based signal. In order to de-
velop the decision-making methodology, some notation is de-
fined as follows.

Definition 1: For a given sample, I’ is a Boolean indicator
for a control chart C? such that

Iﬁbz{

Definition 2: Interval D! is defined as the region of support
for the discrete Haar function hgn-1,;; (j = 1,...,2"). This
support of the region corresponds to C? .

The definition of interval D¢ is illustrated in Fig. 3.

chart indicates in-control
chart indicates out-of-control.

1 (true),
0 (false),

if C¢

if Ct (19)
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Fig. 4.

Illustration of S .

Definition 3: Si is a set of control charts of C,Jc where k and
7 are non-negative integers and

Forn =0and: = 0,

53:{0,{}, 1<k<N,1<j<251 )
Forn > land1<i<2" 1%
si={cl} n+1<k<N,
(i—1)-2F" 1 <j<i 2k, 1)

An illustration of S? is shown in Fig. 4.

Since the Haar coefficient C is very sensitive to the mean
shift occurring in its support interval D! (n > 1), the mean-
shift location could be identified by monitoring individual Haar
coefficients. Thus, if there is an out-of-control alarm in an indi-
vidual control chart of CfL , we can say that a mean shift occurred
in C!’s supporting interval D/ . Since the supporting intervals
of Haar coefficients at a higher scale are smaller than those of
Haar coefficients at a lower scale, normally we can only report
the mean shift corresponding to the higher scale coefficient if
its interval overlaps with the interval of a lower scale coefficient
that is also out of control. For example, if there are out-of-con-
trol alarms in the control charts of C4 and C1{, since the corre-
sponding support intervals D} C D}, we only need to report
that there is a possible mean shift in interval D}. We can for-
mulate this decision rule as follows. First, define an indicator
function for the mean shift in the interval of D! as DM, where
DM = 1 if there is a mean shift in D! and DM = 0, other-
wise. Then

DM =T.n < N I,Q) (22)
vClesi

where T; is the logic NOT of I and N is the logic AND op-
erator. An interpretation of (22) is that there is a mean shift in
D, if the chart of C? is out of control and other charts of Cj
(VCY{ € S) that are at higher scale levels and with overlapped
supporting intervals are in control.

The first step in the decision-making procedure of SPC moni-
toring system is to check if the SSR chart for the Haar transform
is in control or not. If it is not, the decision-making procedure
should stop (The scales IV used need to be increased to make
the Haar transformation adequate.) The second step is to check
the 7' chart if the SSR chart is in control. If the 7' chart is

out of control, we would need to go to the third step to check
the control charts for the individual Haar coefficients. Based on
(22), the location of the mean shift can be further identified in
the third step.

By using this decision-making procedure, we can not only de-
tect the process change based on the T2 chart, but also interpret
the result of the 7' chart based on the individual control charts
of the Haar coefficients.

F. Mean-Shift Magnitude Estimation

Note that every interval D, except DY), has two equal length
subintervals by the definition of the Haar function. Thus, the
magnitude of mean shifts can be estimated in the following two
situations.

1) Estimation of the Mean-Shift Magnitude When
n = 0: The magnitude of a mean shift in interval D)
can be calculated as follows:

MSS(1) = MS(1) — My (1)

(23)
where M S)(1) is the mean-shift magnitude of current sample
in DY. The value M{(1) is the estimated mean of the current
sample in DY, and M (1) is the mean value of the in-control
data in DJ. It is clear that MJ(1) = Z_P/Zég and Mg(l) =
2?/2Cy, where T and Cj are the Haar coefficients at scale
0 of current cycle-based signal and the normal cycle-based sig-
nals, respectively.

2) Estimation of Mean-Shift Magnitude When n > 1: Since
intervals D!, (1 <n < N,1<i< 2"_1) consist of two equal-
length subintervals, the estimation of the mean-shift magnitude
should be done in two subintervals, shown as follows:

7

M, (k) = M, (k) = M, (k) (24)
where M S: (k) (k = 1, 2) are the mean-shift magnitudes of the
current sample in the first-half and the second-half interval of
D . The values M (k) and M., (k) (k = 1, 2) are the estimated
mean values of the current cycle-based signal and the normal
cycle-based signal in two subintervals of D!, respectively.

In order to estimate the magnitude of mean shift for interval
D! , the magnitudes of mean values M? (k) (k = 1, 2) should be
calculated first. Using (8), the relationship between mean-shift
magnitudes in two subintervals of DY is

(p—v

(Mi(1) - Mj(2)} =275 ¢l

(25)

Because M;,(1) and M;,(2) are the mean values in the first-
and second-half interval of D;,, the following relation also exists
with the mean value M? _, (k) of the interval D? _;:

{Mi(1) + Mi(2)}
2

where 1 < n < N,1 < < 2"~ ! and 7 and k are deter-
mined by n and 4. Based on the fact that the interval covered by
M (k) is the interval covered by M. (1) and M. (2), the fol-
lowing rules can be obtained: if » = 1,then j = Oand k = 1;
if n > 2 and 7 is given, then 5 and k can be determined by
i=2(—1)+kwherek = 1,2and 1 < j < 2", For
example, if n = 3,7 = 1,thenj = land k = 1.

= M;_, (k) (26)
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Fig. 5. Stamping process.

Since the calculation of mean values in scale n is based on the
mean values in scale n — 1, a recursive calculation is required
to solve (25) and (26) together. The resulting solutions are
CrtM;,_ (k)
_(p=n+1) A

p) C:L

(p—n+1)

M (D=2
Mi(2)=M]_,(k)-2

with initial value MJ(1).

27

By using the same procedure of calculating M (k) (k =1,

2), M;(k) (k = 1, 2) can be calculated using (27) and 5; in

the place of C . Finally, the mean-shift magnitudes M S? (k)
(k = 1,2) can be estimated for the interval D{, by using (24).

III. APPLICATION OF THE SPC MONITORING SYSTEM
IN STAMPING PROCESSES

A. Background

Stamping processes, as illustrated in Fig. 5, are important
manufacturing processes. The current practice of stamping
process control is based on offline manually inspecting part
quality at specified time intervals. Therefore, there is a delay in
fault detection. In a high-production rate environment, a large
amount of scrap can be produced due to this delay. Hence, the
offline manual inspection is not effective in preventing quality
cost increase. It is highly desirable to develop an automatic
process monitoring system for high-production rate stamping
processes.

Little research has been reported in the process monitoring
and fault diagnosis for stamping. Tonnage measurement con-
tains rich information and features for stamping process fail-
ures [22]. One of very important forces to the part quality is the
cushion force applied at a station. Cushion force is generated
by the die cushion. Insufficient cushion forces resulting from
air leakage will affect the part quality severely. The changes in
cushion forces can be reflected in the tonnage signal mean shift
within a certain stamping crank angle range.

The SPC monitoring system using Haar transforms developed
in previous sections can be applied to monitor and diagnose the
faults in cushion forces.

B. Stamping Process Monitoring by Using the SPC Monitoring
System

In the stamping process considered in this case study, the
cushion forming force (tonnage) of each production cycle is
sampled (The data set is available upon request from the first
author.) The sampling is with respect to the crank angle and
each sample of the cycle-based signal consists of 280 measure-
ment points. If we treat each measurement point as a variable,
there are 280 process variables to describe the tonnage. There

A
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Fig. 6. Support regions for each control chart.
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Fig. 7. Approximations of the original signal at different levels.

are three die cushions: cushion #1, cushion #2, and cushion #3.
The cushion forces of cushion #1, #2, and #3 are associated with
different crank angle ranges. For example, cushion #1 is related
with all crank angles. If cushion #1 provides insufficient cushion
force, a defective part is manufactured due to insufficient ton-
nage forces.

A total of 136 cycle-based signals are collected from this
stamping process (N5 = 136) under normal conditions. Since
the number of variables (280) is larger than the number of sam-
ples (136), the conventional T2 chart could not be used here.

The Haar transform requires the number of observations to
be some power of 2. In this study, 24 points are removed from
the end of the original signal to create a new sample with 256
measurement points (p = 8). The support region for each Haar
coefficient of the tonnage signal of one cycle is shown in Fig. 6.
The approximations of the original signal using the first four
levels of Haar coefficients are illustrated in Fig. 7.
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Approximation Scales

Fig. 8. Max @); with different Haar transform scales.
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Fig. 9. Phase I T2 chart.

The SPC monitoring system is built to monitor this stamping
tonnage signal. By specifying Q = 0.05, the scale of the Haar
transform is determined to be N = 4 by using (15). Max @,
values with different Haar transform scales are shown in Fig. 8.

Each of the 136 cycle-based signals is used to perform the
Haar transform, as in (5). The mean ¢ and sample covariance
S of Haar coefficients can be calculated using (18) and (10),
respectively. The Phase I T2 chart with a; = 0.025 is shown
in Fig. 9. Fig. 9(a) is the Phase I 7' chart for the original 136
cycle-based signals. Clearly, there are 21 out-of-control points.
After those out-of-control points are removed, a new Phase I
T? chart is implemented, as illustrated in Fig. 9(b). All of the
115 cycle-based signals are in-control in Fig. 9(b). Hence, these
115 cycle-based signals are taken as base-line in-control sig-
nals from normal working conditions. A typical normal signal
is shown in Fig. 11.

With a lognormal distribution approximation of SSR,
the SSR chart of the in-control cycle-based signals with
ag = 0.0027 is shown in Fig. 10. That the SSR chart is in
control indicates the scales used by the Haar transform are
appropriate.

In order to demonstrate the effectiveness of the SPC moni-
toring system developed in this paper, four cycle-based signals
are collected at each of the three conditions: cushion #1 fault,
cushion #2 fault, and cushion #3 fault. The fault in cushion #1

UCI -
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In(SSR,)

20 40 60 80 100 120
Sample Index

Fig. 10. SSR chart for the in-control signals.
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Fig. 11. Normal and abnormal signals.

happens in the first four samples. It causes a global mean shift
within one operation cycle. The fault in cushion #2 happens in
the next four samples. It causes a local mean shift from obser-
vation 34 to observation 256. The fault in cushion #3 happens
in the final four samples. It causes local mean shifts from ob-
servation 68 to observation 226. Cycle-based signals from both
a normal and a faulty condition (Fault #1) are shown in Fig. 11
(Other faulty signals are similar to the one shown: the difference
between the normal signal and the faulty signal is not obvious
from the original signal). It is difficult to detect and identify the
location of the mean shift from the time-domain signals.

The outputs of the SPC monitoring system for these new sam-
ples are shown in Figs. 12 and 13. The vertical dashed lines in
these two figures separate the data points of normal conditions
and the data points of faulty conditions. To clearly illustrate the
results, the log coordinate is used for the T2 chart. In Fig. 12,
the 1'% chart generates an out-of-control alarm for all of the data
points from the faulty working condition. On the other hand,
the SSR chart is in control. Therefore, by monitoring only 16
wavelet coefficients, we can detect the mean-shift changes of
the cycle-based signals in this case study.
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All individual charts C using Bonferroni limits are shown
in Fig. 14 for these samples from the faulty working condition.
The control limits are determined by (17), where o is selected
as 0.025.

The first sample is taken as an example to illustrate the
decision-making method. According to Fig. 14, control chart
CY is out of control in the first sample and other charts
are in control. Thus, I§ =0 and other I’ = 1 by (19). By
22, DM =I3NC N I.)=0n( (N 1)=1. Thus,

vCles) vCles)

it can be concluded that a mean shift occurred in the interval
DY, which is consistent with the fact that a global mean
shift occurred in the process signal. The results using this
decision-making method are summarized in Table I. It can
be seen from the figures and the table that the proposed
SPC monitoring system can effectively detect the mean shift
in the cycle-based signal.

For the fault caused by cushion #1, the estimated interval of
mean shift is Dg, which is consistent with the fact that the fault
in cushion #1 causes a global mean shift. For the fault caused by
cushion #2, two of the samples indicate the mean shift occurred
between 1~64, one indicates that the mean shift happens be-
tween 1~128, and one indicates that the mean shift is a global

mean shift (1~256). It should be pointed out that the Haar co-
efficients except C{) represent the mean difference between the
first half and the second half of their support intervals. Hence,
the individual control charts of Haar coefficients are sensitive
to the starting and ending location of the mean shifts, but not
sensitive to the constant mean shift within their supporting in-
tervals. Therefore, for a local mean shift as that caused by the
fault of cushion #2, the SPC system can successfully identify the
starting point of the mean shift (37th observation in this case)
with high probability. The ending point of the mean shift for the
fault caused by cushion #2 is the end of the cycle-based signal.
Hence, there is no indication of the ending point before the end
of the signal. Similarly, for the fault caused by cushion fault #3,
the SPC system can successfully identify the starting and ending
point for the mean shift (68th and 226th, respectively). Besides
the location of the mean shift, the magnitude of the mean shift
can also be estimated using (23) and (27). For example, for
sample #1, the estimated mean shift is M S{(0) = —2.03; for
sample #5, the estimated mean shifts are M S3(1) = 0.1 and
MS3(2) = —-2.6.

It should be pointed out that all aforementioned system moni-
toring, mean-shift location detection, and mean-shift magnitude
estimation can be automatically accomplished without operator
intervention.

C. Statistical Performance Evaluation

The above application illustrates the effectiveness of the pro-
posed SPC monitoring system. To evaluate the statistical perfor-
mance, further numerical studies are conducted. In this study, the
mean curve of the 115 base-line in-control cycle-based signals is
taken as the true curve. In this simulation, the covariance struc-
ture is simplified. A normally distributed iid noise with zero mean
and variance one was added to the mean curve to generate 100
cycle-based curves as the normal data set. Because the proposed
method focuses on the mean-shift detection with fixed covari-
ance, this simplification will not significantly affect the perfor-
mance comparison. Then, three types of the control charts are
implemented based on the normal data set: 1) a T'? chart using
16 Haar coefficients. The « error probability is selected as 0.025
and the upper control limit is 37.44. 2) A x? chart using the orig-
inal 256-dimensional signal. The covariance matrix is the true
value used in the simulation. (The T2 chart is not used because
of the difficulty of estimating the covariance of high dimensional
dataset.) The o error probability is selected as 0.025 and the upper
control limitis 302.21. 3) A simple Shewhart chart that monitors
the mean of the curve. The « error probability is also selected as
0.025. The center line is 51.11, the upper control limit is 51.26,
and the lower control limit is 50.96.

To test the performance of these three control charts, 10 000
new cycle-based signals with different magnitudes of mean shift
are generated and plotted on these three charts. The detection
power (1 — (3) is estimated as the number of the out-of-control
points divided by the 10 000. Four segments of mean shifts are
considered: 1) the mean shift occurred on all 256 dimensions. 2)
the mean shift occurred on 256/2 dimensions from observation
#34 to #162. 3) the mean shift occurred on 256/4 dimensions
from #162 to #226, and 4) the mean shift occurred on 256/4
dimensions from #33 to #65. The detection power of these three
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TABLE 1
DECISION-MAKING RESULTS

Samples | Cushion I Intervals with
Fault Support interval of the out-of- mean shifts
control coefficient
1 #1 1) D} (1~256)
2 #1 1) D} (1~256)
3 #1 1 D) (1~256)
4 #1 1) D) (1~256)
5 #2 .01} D} (1~64)
6 #2 .01 D} (32~64)
7 #2 1.1 D} (1~128)
8 #2 ,1 D) (1~64)
9 #3 10,010,108 D} (225~256)
10 #3 L0 LT D} (65~96), D} (225~256)
11 #3 VAN S N Y D} (65~96), Df (225~256)
12 #3 1.0, 0,01 D} (65~96), D} (225~256)

types of control charts for these cases of mean shift is shown in
Fig. 15(a), (b), (¢), and (d), respectively.

Based on Fig. 15, the detection power of the T2 chart of the
Haar coefficients is uniformly better than the detection power
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Fig. 15. Comparison of detection powers of the three types of control charts.

of the T? chart of the original signal. When the length of the
mean-shift segment is long [Fig. 15(a) and (b)], the detection



ZHOU et al.: SPC MONITORING SYSTEM FOR CYCLE-BASED WAVEFORM SIGNALS 71

(a) (b)

0.8 0.8

0.6 0.6

0.4

—©— Scale 2 —©— Scale 2
—— Scale 3 0.2 —— Scale 3
—7— Scale 4 ) —— Scale 4

0 1 2 3 0 1 2 3

Mean Shift Magnitude (o)

() (d)

0.8 0.8
0.6 0.6
o a
0.4 04
—6— Scale 2 —6— Scale 2
0.2 —»— Scale 3 0.2 —»— Scale 3
—7— Scale 4 —7— Scale 4
) LSBT IIT T FIFFAIAII TP POPY () B A A AT AP A AP
0 1 2 3 0 1 2 3
Mean Shift Magnitude (o) Mean Shift Magnitude (o)

Fig. 16. Accuracy of the detection of the mean-shift location.

power of the Haar T is comparable with the Shewhart chart.
But when the mean-shift segment is short [Fig. 15(c) and (d)],
the performance of Haar 72 is much better than the Shewhart
chart.

The accuracy of the detection of the mean-shift location is
also studied. The results are shown in Fig. 16. The four sub-
figures correspond to the four cases of mean-shift segments as
that in Fig. 15. In each subfigure, the probability of the detec-
tion of the starting point of the mean shift by the corresponding
individual Bonferroni control charts, denoted as p, are illus-
trated. For example, consider Fig. 16(b). The mean shift oc-
curred from observation #34 to #162. Since the support inter-
vals of the wavelet coefficients C3, C3, and C? are #1~#128,
#1~#64, and #33~64, respectively, the wavelet coefficients that
correspond to the starting point of the mean shift #34 at scale 2,
3, and 4 are C21, C:,}, and CZ, respectively. The three curves in
Fig. 16(b) illustrate the detection probability of the individual
Bonferroni control charts of these three coefficients. The overall
« error of the Bonferroni charts is selected as 0.025.

From Fig. 16, we can see that in most cases, the proposed
SPC monitoring system can successfully narrow down the lo-
cation of the mean shift into a small interval. In Fig. 16(b), (c),
(d), the coefficient at Scale 3 possess good detection power for
all of the three mean-shift cases. Since the support interval of
Scale 3 coefficient is with length of 64, we can narrow down the
mean-shift location to an interval with a length of 64. Another
significant characteristic that can be seen from Fig. 16 is that
the detect power is affected by the location of the starting point
of the mean shift. This is not surprising because the Haar co-
efficient is proportional to the mean difference of observations
in two neighboring intervals. If the mean-shift segment covers
the whole support of a Haar coefficient or the mean-shift seg-
ment is symmetric to the middle point of the support of a Haar
coefficient, the corresponding Haar coefficient will be insensi-
tive to the mean shift. For example, in Fig. 16(a), the mean-shift

segment covers the whole cycle-based signal. Although the T2
chart using Haar coefficients possesses high detection power in
this case [Fig. 15(a)], the high scale individual coefficients are
not sensitive to this mean shift. In Fig. 16(c), the mean-shift seg-
ment is from #162 to #226, which is almost symmetric to the
middle point of C3 (#192). Therefore, C3 is not sensitive to this
mean shift in Fig. 16(c). On the other hand, if the mean-shift
segment is located in one subinterval of the support interval, the
corresponding Haar coefficient will be most sensitive.

From these numerical studies, the proposed SPC monitoring
system possesses good detection power and detection accuracy
for the mean shift in cycle-based signals. One limitation of this
method that can also be seen from the simulation is that accu-
racy of the detection of the mean-shift location is affected by
the location of the mean-shift segment. This limitation is due
to the inherit data structure of the Haar transform. A general-
ized Haar transformation that can overcome this limitation is
currently under investigation. The results will be reported in the
near future.

IV. SUMMARY AND DISCUSSION

A new SPC monitoring system is developed in this paper by
integrating statistical process monitoring and wavelet transform.
This system provides the capability of automatically detecting
the mean shifts in cycle-based process signals. It has many ad-
vantages over the conventional multivariate SPC charts.

First, this system provides a systematic statistical monitoring
approach. It can be used to analyze the monitored process at
different scales (frequencies) by using the hierarchical structure
of the SPC monitoring system. Decision-making using the SPC
monitoring system can be used to locate where the mean shift
occurred and to estimate magnitudes of mean shifts. Second,
when the number of observations within a sample is very large,
the conventional T2 chart is difficult to use due to the high di-
mensionality of the variable space. Similar to the principal com-
ponent approach to reduce the dimensionality of data, the pro-
posed SPC monitoring system utilizes the Haar transform as a
dimension reduction tool. A Hotelling T2 chart is used to mon-
itor the Haar coefficients. Because the Haar coefficients are very
sensitive to the systematic mean shift within each sample, the
proposed SPC monitoring system is very effective in mean-shift
detection. If other signal characteristics (e.g., the frequency con-
tent) are important, a different wavelet basis can be used. An
example of sheet metal stamping tonnage signal monitoring is
provided to demonstrate the effectiveness of the developed SPC
monitoring system. It is shown that for processes with system-
atic mean shifts within a sample, the proposed SPC monitoring
system provides more information and detection capability than
conventional SPC methods.

This paper presents a generic framework for the enhanced
statistical process control technique for cycle-based process
signals. The case study illustrates the potential for the proposed
methodology. In the future, several remaining issues in this
scheme will be studied quantitatively, such as the impact of the
scale selection on the performance of the control charts, and
the relationship between the magnitude, location of the process
mean shift, and the probability of detection.
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