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This paper presents a supervisory generalized predictive control (GPC) by combining
GPC with statistical process control (SPC) for the control of the thin film deposition
process. In the supervised GPC, the deposition process is described as an ARMAX model
for each production run and GPC is applied to the in situ thickness-sensing data for
thickness control. Supervisory strategies, developed from SPC techniques, are used to
monitor process changes and estimate the disturbance magnitudes during production.
Based on the SPC monitoring results, different supervisory strategies are used to revise
the disturbance models and the control law in the GPC to achieve a satisfactory control
performance. A case study is provided to demonstrate the developed methodology.
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1 Introduction
In recent years, the need of thin film deposition has increased

significantly in coating manufacturing processes. Among various
coating techniques, high throughput within a coating manufactur-
ing process can be achieved by depositing a thin film into a large
area of continuous roll-by-roll flexible substrates. Although the
recent development of in situ sensing provides an opportunity for
online measuring of thin film thickness, the complexity of the
source effusion, the heat dissipation, and the source consumption
within the production run, and the long dead time present in a
continuous process, thickness uniformity control is still a critical
challenging research issue in process development.

This paper presents a supervisory generalized predictive control
�GPC� strategy by combining the GPC with statistical process
control �SPC� for the thin film deposition process control. An
overview of the thin film deposition process is presented in Sec. 2,
where the thin film deposition chamber structure, process vari-
ables, variation sources, current control strategy, and limitations
are discussed. In Sec. 3, the framework of the supervisory GPC is
proposed with the detailed discussion on the process modeling,
GPC design, SPC monitoring, and supervisory strategies. A case
study based on production data is given in Sec. 4. Finally, the
summary and recommendations are given in Sec. 5.

2 Overview of Characteristics of Thin Film Deposition
Processes

2.1 Thin Film Deposition Chamber Structure. The thin
film deposition process is normally conducted in a vacuum cham-
ber. A flexible substrate is continuously transported through sev-
eral deposition zones at a constant flux. With an appropriate de-
sign of each source location, the substrate motion creates a
controllable flux profile at the substrate. Figure 1 shows the loca-
tions of effusion sources in the chamber. The source is filled into
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an insulated source container, called the source cell, with several
nozzles on the top of the source container for evaporation. In
general, temperature is a critical factor affecting the effusion rate
and evaporation deposition in thin film deposition processes.

The requirement for a thin film deposition process is to provide
a high rate, simultaneous deposition of materials to the substrate
surface and to form a dense stoichiometrical, well-adherent film
on the substrate. Large area deposition and fast substrate moving
speed are desirable in a practical manufacturing process in order
to achieve high production throughput. However, it leads to a
challenging issue of reducing the loss production because of film
nonuniformity as the deposition progresses across both the width
and length of the substrate. The causes of film thickness variations
are extremely complex, as they are affected by source design, heat
dissipation to the surrounding parts, and production conditions.

2.2 Product Quality Monitoring and Process Control. For
product quality control, the conventional SPC procedure is to con-
duct a post-quality analysis by using an off-line measurement in-
strument to analyze the film layer structure and thickness. Because
the major process factors impacting the thin film quality are
source temperature and/or pressure, an appropriate control of
these factors is used to compensate for unanticipated process dis-
turbances during production. Examples of unanticipated source
variations are cell material property, rebuilding and reinstallation
of source cells between runs, impurities in sources and debris in a
chamber, consumption of materials over production time, changes
in characteristics of source heat dissipation to substrate and cham-
ber, degradation of source heaters, etc. As a result, the film thick-
ness may vary even when the source temperature or pressure is
maintained at the same target setting points. In addition, it is ex-
tremely difficult to model the interaction of the source evaporation
process with other process variables, such as environmental tem-
perature and various disturbances. Thus, the compensation of dis-
turbance cannot be achieved through either an automatic feed-
forward control or an off-line presetting of the source temperature
or pressure.

In general, it is highly desirable for a manufacturing process to
have the capability of real-time sensing and detecting process
changes and of making a corresponding process adjustment to

prevent or reduce defective product loss over production. This
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issue is more critical for a continuous dynamic manufacturing
process when there is a need to accommodate unanticipated pro-
cess disturbance, variability, or drifts during production time. The
recent development of in situ thickness sensors has provided a
great opportunity of achieving online monitoring and automatic
process control for thin film deposition.

2.3 Process Variables and Process Variations

2.3.1 Inputs and Outputs in a Process Model. In order to de-
velop an automatic feedback controller in a thin film process, a
process model is required to describe the relationship of the in situ
measurable product quality and the controllable process variables.
In general, after the process setup variables �such as chamber
pressure, chamber environmental temperature, and web moving
speed� achieve their target values, the effusion source temperature
is the most sensitive process variable directly affecting the physi-
cal effusion properties during the production run. The source tem-
perature will be used as the controllable inputs of the process
model. The output of the process model is the deposition film
thickness.

2.3.2 Dead Time Variation and Uncertainty. The thin film
deposition process is a continuous manufacturing process. In ad-
dition to considering the dynamic property of the source vapor-
ization, the dead time from the temperature adjustment to the in
situ thickness measurement should be considered in the process
modeling and controller design. As shown in Fig. 1, the thickness
measurement is generally taken at the end of the production line.
The total system dead time includes the deposition time and the
measurement delay due to the time needed for the substrate to
move from the source location to the thickness measurement.

Based on the nominal moving speed of the substrate and the
distance between source and in situ sensors, the measurement-
induced dead time can be calculated for each source cell. How-
ever, the thickness measurement will reflect the compounded ef-
fect of multiple cells if one source has several cells located at
different locations in a chamber, which would lead to different
dead times for different cells. In addition, the substrate speed also
varies around the nominal setting value over a production run,
which affects both the film growth rates and substrate moving
time to the thickness measurement. The inevitable variations of

Fig. 1 Chamber structure o
Fig. 2 The structure of

316 / Vol. 128, FEBRUARY 2006
these factors will cause uncertainties in the dead time and estima-
tion errors during the production, which pose a challenge in the
development of a feedback controller.

2.3.3 Process Disturbances Within One Production Run. Dur-
ing production, there always exist significant and unanticipated
disturbances leading to process variation within the run. For ex-
ample, the temperature dissipation to the substrate and chamber
and the consumption of source will lead to a ramp drift distur-
bance over the production run. A spike impulsive disturbance is
normally observed because of errors in sensor measurement or
data acquisition system. It is known that the control actions for a
high-frequency impulsive disturbance and lower frequency linear
drift disturbance should be different. An inpropriate control action
will likely cause a spitting problem in the process.

2.4 Current Control Strategy and Its Limitations. The cur-
rent thin film deposition control has two steps in each run: a
manual process control during the initial start-up of production
and an automatic feedback control during the continuous
production.

In each new production run, a manual control is performed to
increase the temperature through several steps. After the system
response �i.e., the film thickness� is close to the target point, an
automatic controller is engaged to feed back the thickness-sensing
data in order to maintain the deposited film thickness at the target.
The existing controller is a predesigned time-invariant controller
based on a fixed model from off-line identification. Although such
a controller is simple in its implementation, different disturbance
structures are not considered in the controller design.

3 Supervisory Predictive Control Strategy
A supervisory control strategy is proposed in this paper for thin

film deposition process control. The framework of the supervisory
GPC is shown in Fig. 2. Detailed discussions on each module are
provided in Secs. 3.1–3.3

3.1 Process Modeling Using ARMAX Model. In the start-up
period of each production run, the temperature of the chamber is
manually increased step by step, with each step having at least
eight sampling intervals. Those inputs, together with the corre-

hin film deposition process
the supervisory GPC

Transactions of the ASME



sponding film thickness responses, are used to model each run of
the thin film deposition process. The run-to-run variation is re-
flected in the model parameter change. An ARMAX
�na ,nb ,nc ,nd ,d� model with disturbance is used to describe the
thin film deposition process,

A�q�yt = B�q�ut−d + C�q�f t + D�q�et �1�

where yt and ut−d are the system response of the film thickness at
time t and control input of the corresponding source temperature
at time t-d, respectively, and d is the dead time of the process,
A�q�, B�q�, C�q�, and D�q� are polynomial functions with orders
na, nb, nc, and nd, respectively, and q−1 is the backshift operator
with q−1yt=yt−1. Here, A�q�=1+a1q−1+ . . . +ana

q−na, B�q�
=b1q−1+ . . . +bnb

q−nb, C�q�=c1q−1+ . . . +cnc
q−nc, and D�q�=1

+d1q−1+ . . . +dnd
q−nd. f t represents the disturbances that are pos-

sibly existing in the process as either a spike, a mean shift, or a
linear drift function; et is an independent identically distributed
�IID� zero-mean sequence of modeling residuals with et

�N�0,�e
2�. The model parameters in Eq. �1� can be estimated

using the least-squares method if D�q� is known. In the case of
unknown D�q�, the two-stage methods described in Sec. 10.4 of
Ljung �1� should be used. In our case study discussed in Sec. 4,
the ARX model structure with D�q�=1 is estimated by using the
least-squares method. Equation �1� can also be rewritten as

yt =
B�q�
A�q�

ut−d +
C�q�
A�q�

f t +
D�q�
A�q�

et �2�

Denote B�q� /A�q�=� j=0
mu gj

uq−j, C�q� /A�q�=� j=0
mf gj

fq−j, and
D�q� /A�q�=� j=0

me gj
eq−j; and mu, mf, and me are the maximum order

of each corresponding item. They are determined based on the
impulse response function gj

s from each input term to the output y.
That is, when j�ms, �gj

s���0 �s=u , f ,e�. An example of deter-
mining mu is given in the case study in Sec. 4. Equation �2� can be
rewritten as

yt = �
j=0

min�t−d−1,mu�

gj
uut−j−d + �

j=0

min�t−1,mf�

gj
f f t−j + �

j=0

min�t−1,me�

gj
eet−j �3�

3.2 Generalized Predictive Control. A generalized predic-
tive control �GPC� was first proposed by Clark et al. �2�, and the
properties of GPC are further studied by Clark and Mohtadi �3�
for a set of continuous chemical process control problems. Re-
cently, GPC has also been used in a semiconductor control appli-
cations �4�. The first reason to choose GPC for the thin film depo-
sition process control in this paper is the uncertainties in dead-
time estimation. As described in the process overview, the single
thickness output yt is a compounded effect of several source cells
located at different places. Since there is no sensor to measure
each cell effusion, the dead time cannot be determined for each

Fig. 3 Initial production run
cell separately. As a result, the dead time used in the controller
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design is the combined effect of several sources. Moreover, the
web speed variation also leads to dead-time variation. Without
accurately knowing the dead time, it is difficult to design a con-
troller using the proportional, integral, and derivative �PID� or
minimum variance control strategy. Thus, it is desirable to design
a generalized predictive controller to consider the possible range
of multiple dead-time values. The second reason of using GPC is
that the thin film deposition process is generally a nonminimum
phase system described by an ARMAX model. Thus, significant
challenges exist in the controller design for PID or minimum vari-
ance control strategies. The third reason of using GPC is its capa-
bility of integrating supervisory strategies for compensating for
unknown and time-varying disturbance patterns: During the pro-
duction, different disturbance patterns �such as a mean shift, a
slow drift, or a spike� may occur in the thin film deposition pro-
cess. An adaptive control strategy should be designed to reflect the
difference in disturbance models. In recent years, research
achievements on using an exponential weighed moving average
�EWMA� method to estimate the time-varying mean shift or slow
linear drift have demonstrated great success for a run-to-run con-
troller design �5,6�. However, most of these methodologies as-
sume that the disturbances exist during all production time with
predefined disturbance model structures. Thus, EWMA models are
used to continuously estimate the unknown or time-varying dis-
turbance model parameters. Sachs et al. �7� investigated the run-
to-run controller design by characterizing the run-to-run variations
as two different modes: a slow mode and a fast mode. In contrast
to other models, Sachs et al. assumed that a slow mode distur-
bance exists over all production time, which is estimated by
EWMA and continuously compensated in the controller. The com-
pensation of fast mode disturbance is only conducted when a large

a of step input and response
dat
Fig. 4 AIC under different model structures
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shift is detected using an X-bar monitoring control chart. There-
fore, the SPC monitoring technique provides a supervisory strat-
egy to online determine the disturbance model structure. However,
all of these run-to-run control methodologies are developed for a
minimal variance controller, which is limited by assuming that the
process has a fixed dead time. Therefore, they cannot be applied in
the thin film deposition process in which a large and uncertain
dead time exists.

In this paper, our objective is to integrate SPC with APC �au-
tomatic process control� to develop a supervisory predictive con-
troller. The need of integrating a supervisory strategy with a pre-
dictive controller is more critical than in a minimal variance
controller because more steps of disturbance prediction will be
used in the predictive controller. A larger prediction error is usu-
ally generated when the prediction steps are increased because of
modeling uncertainty. Therefore, accurate identification of the dis-
turbance model structure is extremely important in the design of a
predictive controller, especially for a process with large dead time.

Considering all these aspects, a GPC strategy is adopted for the
thin film deposition process control. It is robust to the dead-time
variability and estimation uncertainty, is effective in handling non-
minimum phase systems, and has the ability to combine SPC with
supervisory strategies.

The objective function of the GPC control is defined as

J = �
i=d

N+d

q�i��ŷt+i�t − yt+i
* �2 + �

i=0

N

r�i�ut+i
2 �4�

where yt+i
* is the reference �or desired target� output at time t+ i,

q�i� and r�i� are the weighting coefficients, N is the sliding hori-
zon for the output prediction and input series, and ŷt+i�t is the ith

Fig. 5 Comparison of the modeling
Fig. 6 Impulse and step response of th
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step-ahead prediction made at time t. This is obtained from Eq. �3�
by taking the conditional expectation

ŷt+i�t = E�yt+i�t� = �
j=0

i−d

gj
uut+i−d−j + �

j=i−d+1

min�t+i−d−1,mu�

gj
uut+i−d−j

+ �
j=0

min�t+i−1,mf�

gj
f f t+i−j + �

j=i

min�t+i−1,me�

gj
eet+i−j �5�

f t+i−j �j=0,1 , . . . , i−1� is the prediction of the deterministic dis-
turbance function made at time t according to the identified dis-
turbance function f t at time t. For the random error et, the condi-
tional expectation under the current time t is E�et+i�t�=0 and
E�et−i�t�=et−i �i�0�. Thus, we have E�� j=0

t+i−1gj
eet+i−j	

=� j=i
t+i−1gj

eet+i−j.
The basic concepts of the GPC strategy can be summarized as

follows: At current time t, an optimal control law ut is obtained by
solving the optimization problem defined in Eq. �4�. By using the
sliding horizon window of each of the N+1 step predictions, the
control problem is simplified from a dynamic programing problem
to a static optimization problem �8�.

In order to solve the predictive control problem, the objective
function in Eq. �4� is equivalently represented by a vector and
matrix forms as

J = �Ŷ − Y*�TQ�Ŷ − Y*� + U1
TRU1 �6�

where Q=diag�q�N+d� ,q�N+d−1� , . . . ,q�d�� and R
=diag�r�N� ,r�N−1� , . . . ,r�0�� are diagonal matrices of weighting

coefficients. The vector Ŷ represents all N+1 step predictions in

ults with the real process response
res
e thin film deposition process model
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the sliding window, which is represented based on Eq. �5� as

Ŷ = G1U1 + G0U0 + GfF + GeE �7�

In this representation, vector Ŷ = �ŷt+d+N�t , ŷt+d+N−1�t , . . . ,
ŷt+d+i�t , . . . , ŷt+d�t�T represents all the predicted outputs based on

time t within the sliding window. Corresponding to Ŷ, the optimal
future control input vector U1 is denoted as U1

op

= �ut+N ,ut+N−1 , . . . ,ut+i , . . . ,ut�T obtained in Eq. �9�. It should be

noted that only a single ut in Û1
op will be used to control the

process at time t. Similarly, from Eq. �5�, the previously used
control input vector is denoted as U0= �ut−1 , . . . ,ui , . . . ,
ut−min�t−1,mu��T, which is ordered backward from time t−1 to the
maximum steps of mu as defined in Eq. �3�. The effect of these
control inputs on the future system outputs is determined by the
dynamic system memory on the historical control inputs. Vector

F̂= �f t+d+N�t , f t+d+N−1�t , . . . , f t+d+N−min�t+d+N−1,mf��
T is used to repre-

sent the deterministic disturbances from time t+d+N backward to

the maximum steps of mf as defined in Eq. �3�. Vector Ê
= �et ,et−1 , . . . ,et−min�t−1,me−d��T is used to denote the random re-
siduals. These residuals can be calculated up to the current time t
using Eqs. �32�, �34�, and �35�, which correspond to a mean shift,
a linear drift, and a spike disturbance, respectively. These equa-
tions will be discussed in Sec. 3.3.3. In the case where me−d
�0, we set E=0, which means the historical random disturbances
do not influence the future output. Corresponding to each of the

vectors U , U , F̂, and Ê used in Eq. �7�, G , G , G , and G are

Fig. 7 A simulated
1 0 1 0 f e

dU1
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used to reflect the different dynamic response weights, which are
defined based on Eqs. �5� and �7�

G1 = 

g0

u g1
u

¯ gN
u

0 g0
u

¯ gN−1
u

� � � �
0 0 ¯ g0

u
�

�N+1���N+1�

reflects how the future control input U1 affects the output Ŷ;

G0 = 

gN+1

u gN+2
u

¯ gmin�t−1,mu�+N
u

gN
u gN+1

u
¯ gmin�t−1,mu�+N−1

u

� � � �

g1
u g2

u
¯ gmin�t−1,mu�

u
�

�N+1���min�t−1,mu��

reflects the effect of the dynamic system memory of the historical

control input U0 on the outputs Ŷ;

Gf = 

g0

f g1
f

¯ gmin�d+t+N−1,mf�
f

0 g0
f

¯ gmin�d+t+N−1,mf�−1
f

� � � �

0 0 ¯ gmin�d+t+N−1,mf�−N
f

�
�N+1���min�d+t+N−1,mf�+1�

reflects the effect of the deterministic disturbance F on the output

Ŷ;

ntrol performance
Ge = 

gN+d

e gN+d+1
e

¯ gmin�t+d−1,me�+N
e

gN+d−1
e gN+d

e
¯ gmin�t+d−1,me�+N−1

e

� � � �

gd
e gd+1

e
¯ gmin�t+d−1,me�

e
�

�N+1���max�0,min�t,me−d+1��	
reflects the effect of the dynamic system memory of the historical

random error E on the future output Ŷ, which is effective only
when me−d�0 holds.

It should also be noted that when the production time is large
enough, the dimension of the matrices G0, Gf, and Ge will be
constrained only by the maximum order of each corresponding
impulse function as defined in Eq. �3�. By solving the optimiza-
tion problem with dJ /dU1=0, one has

dJ
= 2�G1

TQ�G1U1 + G0U0 + GfF + GeE − Y*� + RU1� = 0 �8�
The optimal predictive control law U1
op, is obtained by solving Eq.

�8� as

U1
op = − �G1

TQG1 + R�−1G1
TQ�G0U0 + GfF + GeE − Y*� �9�

Although the vector of all future inputs from ut to ut+N is provided
in U1

op, only ut will be used to control the process at time t+1. At
the next time step t+1, another optimization will be conducted
based on the new observation of yt+1, which is used to obtain a
new optimal control vector U1

op= �ut+1 ,ut+2 , . . . ,ut+N+1�. The
newly obtained ut+1 will be used as a control input at time t+2.
This strategy is repeated until the end of the production run.
co
Remark 1. Prediction Horizon N Selection. The principle in the
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sliding horizon selection is to have its lower limit be equal to the
dead time of the system. If the dead time is estimated with uncer-
tainty or the dead time varies during the production, then the
sliding horizon should be set as the lower bound of the dead-time
estimation. The upper limit of the sliding horizon should be
smaller than, or equal to, the settling time of the system responses.
The settling time T0 is defined as the time of which the absolute
value of the impulse response of the process is always below a
small threshold value of �0 as time goes to infinity. T0 can be
obtained by investigating the impulse response of the model as

�gj
u� � �0 ∀ j � T0 �10�

The value of �0 is determined by the modeling accuracy require-
ment. An example of how to get T0 is given in the case study in
Sec. 4. In addition, a smaller value for N should be selected if
more significant disturbances or model uncertainty exist in the
process.

Remark 2. Weighting Coefficients R Selection. The parameter R
influences the process stability and tracking error. Correct selec-
tion of an R value is important to reach a satisfactory performance
for controlling the nonminimum phase processes. In general, a
larger R value leads to a more stable system, less overshoot,
slower response, and larger tracking errors. Thus, if a disturbance
exists, a smaller R value is preferred under the constraints of
stability and acceptable overshoot. In this way, a fast tracking
performance can be achieved, especially for a fast drift distur-
bance.

3.3 Supervisory Strategies. Various disturbances may exist
in the thin film deposition process as described in Sec. 2. Three
typical disturbance patterns �mean shift, linear drift or ramp, and
spike� will be studied in the development of a supervisory strategy

Fig. 8 Mean-shift disturbance functio
Fig. 9 Comparison of control performa
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in the GPC design.

3.3.1 CUSUM Charts for Detection and Estimation of Shift
and Drift Disturbances. A statistical cumulative-sum �CUSUM�
monitoring chart is used to detect and estimate the disturbance f t
when it is a mean-shift or linear-drift function. The estimated
function f t is used in Eq. �9� to revise the future control adjust-
ment to compensate for corresponding disturbances.

In the following section, a brief review of the CUSUM chart is
given. A detailed discussion of the CUSUM chart technique can
be found in Montgomery �9�.

A CUSUM chart is constructed by positive and negative
CUSUM statistics, calculated as

SH�t� = max�0,xt − ��0
x + K� + SH�t − 1�� �11�

SL�t� = max�0,��0
x − K� − xt + SL�t − 1�� �12�

where xt is the monitoring variable, which has a mean of �0
x under

the in-control condition. The starting values of SH�t� and SL�t� are
SH�0�=SL�0�=0. K= �� /2� and � is the mean shift of xt to be
detected.

An out-of-control point is indicated at time k if SH�k��h or
SL�k��h, where h is a design parameter chosen as the control
limit of a CUSUM chart. In general, the values of h and K deter-
mine CUSUM chart sensitivity to a disturbance and influence the
average run length �ARL� �9�.

If an out of control point is observed at time k, N+ �or N−� is the
number of consecutive samples for which the upper-side CUSUM
SH�k� �or lower-side CUSUM SL�k�� has had a positive value.
Thus, the time at which the mean shift is detected is s+1, and the
occurrence time is s=k−N+ for an upward shift or s=k−N− for a
downward shift. The sum of mean shifts over N+ �or N−� steps is
estimated by

and CUSUM monitoring control chart
nce under mean-shift disturbances
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if SH�k� � h, �
i=1

N+

�i
x = N+��0

x + K� + SH�k�

�13�

if SL�k� � h �
i=1

N−

�i
x = − N−��0

x + K� − SL�k�

In the developed control strategy, there are two different CUSUM
charts used to monitor a mean shift and a linear drift.

3.3.1.1 CUSUM chart for mean shift disturbance monitoring.
In order to detect and estimate the mean shift, the monitoring
variable xt is defined as 	t as follows:

	t =
A�q�
D�q�

yt −
B�q�
D�q�

ut−d =
C�q�
D�q�

f t + et �14�

This relationship follows directly from Eq. �1�. Using this, 	t can
be directly calculated for each newly observed output yt and con-
trol input ut−d. The following hypothesis test is used with a
CUSUM chart to detect whether there exists a nonzero mean shift
of f t:

H0:�	t = E�	t� = 0; when f t = 0

H1:�	t = E�	t� � 0; when f t = � f �15�
So, taking the expectation of Eq. �14�, we have:

�	t = E�	t� =
C�q�
D�q�

f t = �
i=0

nf

Ii
f f t−i �16�

where nf is the maximum order of the inverse function Ii
f. This

function is obtained by expanding C�q� /D�q� with the backward
operator q−1. By substituting the condition of Eq. �15� into Eq.
�16�, the test is

H0, �	t = 0
�17�

H1, �	t = � f
 �
i=0

min�Ns,nf�
Ii

f�
where Ns is the number of steps of the mean shift occurring at
time t−Ns. Thus, if either SH

	 �k��h or SL

�k��h is detected in the

CUSUM chart, the mean shift can be estimated based on Eqs. �13�
and �17� as

if SH
	 �k� � h, � f = �N+ · K + SH

	 �k��
�
j=1

N+

�
i=0

min�j,nf�

Ii
f�−1

�18�

if SL
	�k� � h, � f = − �N− · K + SL

	�k��
�
N−

�
min�j,nf�

Ii
f�−1

Fig. 10 Comparison of model
j=1 i=0
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3.3.1.2 CUSUM chart for linear-drift disturbance monitoring.
When monitoring and estimating a linear-drift disturbance, xt is
defined as �t as

�t = 	t − 	t−1 �19�

From Eqs. �14� and �16�, it can be seen that

	t = I0
f f t + I1

f f t−1 + ¯ + Inf

f f t−nf
+ et �20�

	t−1 = I0
f f t−1 + I1

f f t−2 + ¯ + Inf

f f t−1−nf
+ et−1 �21�

Subtracting Eq. �20� from Eq. �21�, we have

�t = I0
f �f t − f t−1� + I1

f �f t−1 − f t−2� + ¯ + Inf

f �f t−nf
− f t−1−nf

� + et − et−1

�22�

Thus, the following hypothesis test is used with the CUSUM chart
to detect whether there exists a nonzero slope of the linear drift
function f t:

H0:��t = E��t� = 0; when f t − f t−1 = 0 ∀ t � 1
�23�

H1:�	t = E��t� � 0; when f t − f t−1 = �

By taking the expectation of Eq. �22� and substituting it into the
condition of Eq. �23�, we have

H0, ��t = 0
�24�

H1, ��t = �
 �
i=0

min�N�,nf�

Ii
f�

where N� is the number of steps of the linear drift occurring at
time t−N�. Thus, if either SH

� �k��h or SL
��k��h is detected in the

CUSUM chart, the slope of linear drift as

if SH
� �k� � h, � = �N+ · K + SH

� �k�	
�
j=1

N+

�
i=0

min�j,nf�

Ii
f�−1

�25�

if SL
��k� � h, � = − �N− · K + SL

��k�	
�
j=1

N−

�
i=0

min�j,nf�

Ii
f�−1

3.3.2 X-bar Chart for the Detection and Estimation of a Spike
Disturbance. In a thin film deposition process, a spike signal may
be observed from the thickness measurements. In practice, a spike
signal is often due to sensor errors. Thus, it is desirable to detect
and remove the sensing errors from the system response, so that
the controller will not provide wrong feedback in the process
control.

For the thin film deposition process model, the relationship be-
tween a single spike error at time s and the true system output yt

0

idual errors under mean shift
res
without spike error can be modeled as
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yt
0 = yt − 
��t − s� �26�

where ��t−s� is the Kronecker � function, yt is the system output
measurement including the spike error at time s, and 
 is the
magnitude of the spike. So, when there is no process change f t at
t=s, we see from Eq. �14� that

	t=s =
A�q�
D�q�

�yt
0 + 
��t − s�� −

B�q�
D�q�

ut−d = es + 
 �27�

By taking the expectation on Eq. �27�, we have

E�	t� = �
 when t = s

0 otherwise
� �28�

From Eq. �28�, An X-bar control chart can be designed to detect a
large spike error greater than 3�e

2. Thus, the control limits of
X-bar chart are defined as

� UCL = 3�e
2

CL = 0

LCL = − 3�e
2 � �29�

where UCL �LCL� represents the upper �lower� control limits, CL
is the central line of the control chart.

Since a spike usually occurs only at one sample interval, a
decision rule is needed to identify spike errors, which is “A spike
occurs at time s if 	�s� is identified as out of control, but all 	�s
+ i� �i=−b ,−b+1, . . . ,−1 ,1 ,2 , . . . ,b� are identified as in control.”
Here b is the detection window determining the monitoring range.
If an out of control condition is detected, both the time and mag-
nitude of the spike will be provided to the GPC for further com-
pensation actions. The expected magnitude of a spike is E�	�t��
=
 when t=s, and E�	�t��=0 when t�s. So, in a given detection
window with length 2b, the estimated magnitude of the spike 
 is


̂ = 	�s� − �
t=s−b,t�s

s+b
	�t�
2b

�30�

Thus, we see that this is an unbiased estimator: E�
̂�=E�	�t��
−E��t=s−b,t�s

s+b 	�t� /2b�=
−0=
.

3.3.3 Control Law Revision for Supervisory Compensation of
Detected Disturbances

3.3.3.1 Control law revision under a mean shift or linear drift
disturbance. A time delay always exists in detecting a disturbance
using a CUSUM chart. Assume that a mean shift or drift occurs at
time index s, which is detected at time index k�k�s�. Thus, a
detection delay of k−s is experienced. In the next control law
calculation for Ut, t�k, there is a need not only to revise the
future prediction of the disturbance model �fk+1�k , . . . , fk+d+N�k�
based on the detected disturbance function at k, but also to revise
the disturbance model and residual errors during s� t�k for

Fig. 11 CUSUM monitoring c
�fs , fs+1 , . . . , fk� and �es , . . . ,ek� in order to reflect the effect of the
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disturbances occurring at time s.
When a mean shift actually occurs at time s but is detected at

time k, the revised deterministic disturbance model used in the
control law of Eq. �9� is

f t = � 0 t � s

� f t � s
� �31�

� f is calculated by using Eq. �18�. Substituting f t from Eq. �31�
into Eqs. �14� and �16�, the revised residual is obtained as

et = � 	t t � s

	t − �
i=1

min�t−s,nf�

Ii
f� f s � t � k � �32�

By substituting this revised et from Eq. �32� and f t from Eq. �31�
into Eq. �9�, the revised control law U1

op

= �ut+N ,ut+N−1 , . . . ,ut+i , . . . ,ut�T can be obtained, in which the
single ut is used to control the process at time t to compensate the
mean shift.

Similarly, when a linear drift actually occurs at time s but is
detected at time k, the revised disturbance model used in the con-
trol law of Eq. �9� is

f t = � 0 t � s

�t − s + 1�� t � s
� �33�

and the revised residual is obtained by substituting the f t of Eq.
�33� into Eqs. �14� and �16�

et = � 	t t � s

	t − �
i=1

min�t−s,nf�

�Ii
f��t − s + 1�� s � t � k � �34�

By substituting this revised et of Eq. �34� and the f t of Eq. �33�
into Eq. �9�, the revised control law U1

op

= �ut+N ,ut+N−1 , . . . ,ut+i , . . . ,ut�T can be obtained, in which the
single ut is used to control the process at time t to compensate the
detected linear drift.

3.3.3.2 Control law revision under a spike disturbance. If a
spike due to a sensor error is detected, then it is desirable to
remove the spike data from the calculation of the feedback con-
trol. This can be achieved by recalculating the residual series et
used in the control law of Eq. �9� when a spike is detected.

Assume that a spike occurring at time s has been detected at
time k=s+b. In this case, the revised et is obtained based on Eq.
�27� as

et = � 	t t � s

	t − 
 t = s
� �35�

By substituting the revised et of Eq. �35� into Eq. �9�, the revised
op T

trol chart for detecting a drift
on
control law U1 = �ut+N ,ut+N−1 , . . . ,ut+i , . . . ,ut� can be obtained.
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4 A Case Study

4.1 Thin Film Deposition Process Modeling. Real produc-
tion data from a thin film deposition process were collected for the
case study. In the data set, the step input signals of the source
temperature as shown in Fig. 3�a� were applied during the process
start-up period, and the process response is shown in Fig. 3�b�.
Seventy data points were collected for the process modeling. The
sampling interval used in the data acquisition is 2 min.

Based on process engineering knowledge, the thin film process
under the normal operating condition is modeled by an ARX
model with C�q�=D�q�=1. The order of A�q�, B�q�, and delay
step d, denoted as �na ,nb ,d�, will be quantitatively determined
using an information-theoretic approach based on AIC �Akaike’s
information criterion� �10,11�, i.e., the smallest AIC value indi-
cates the best-fit model among all compared model candidates. In
this case study, the possible model structures include the follow-
ing 14 combinations: �11 d�, �21 d�, �31 d�, �41 d�, �22 d�,
�32 d�, �42 d�, �33 d�, �43 d�, �44 d�, �55 d�, �66 d�, �77 d�, and
�88 d�. The possible dead times are d=2,3 ,4 ,5 ,6. Figure 4 shows
all AIC values of these 14 models under each dead time. It is clear
that the model of �5 5 5� �model structure index=11� has the
smallest AIC value, which is considered the best-fit model among
these 14 models. After selecting this best-fit model, the statistical
F test is used to further determine whether a lower order model
�na�5,nb�5� can be used. This statistical testing is based on
whether the sum of squares of the modeling residual errors is
significantly increased when a lower order is used �12�. An F test
with the significance level 5% is used in the final order determi-
nation. Based on the data set, the final ARX model structure is �2
2 5� with the parameters as A�q�=1−0.1297q−1−0.04919q−2,
B�q�=0.007376+0.004798q−1. The error term series is deter-
mined with et�N�0,10−4�.

In order to verify the model accuracy, Fig. 5�a� shows the com-
parison between the real process response and its one-step-ahead
prediction, and Fig. 5�b� shows corresponding residual errors. It is
clear that the identified model has good track performance when
compared to the real process output.

4.2 Predictive Control. The parameters used in the GPC are
selected Q=diag�1,1 ,1 ,1�, R=r�diag�1,1 ,1 ,1�, and r=10−7.
Generally, the weight coefficients Q of prediction error are set to
1 and the weight coefficients R of the control cost are adjusted
based on the applications �8�. In order for the system to be able to
quickly compensate for the process change, R is usually selected
as a relatively small value under the controller stability constraint.
Here, we select a reasonable value of r=10−7 based on trial and
error. In order to calculate the optimal control input U1

op, the di-
mensions of matrixes G0, Gf, and Ge need to be determined.
These dimensions are determined by mu, mf, and me, respectively.
An example of how to choose mu based on the system step re-

Fig. 12 Control performance co
sponse is illustrated in Fig. 6. In Fig. 6�b�, the settling time is
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determined for the step response to stay within ±1% �99% in this
example� of its final stable step response �13�. Thus, the threshold
�0 in Eq. �10� is equal to 1% of its final stable step response. mu
is determined by the number of impulse responses in Fig. 6�a�
with their absolute values larger than �0. The values of mf and me
are similarly determined. The width of sliding window is selected
as N=3. It is determined based on engineering knowledge of the
delay uncertainty in the thin film processes and mu.

In Eq. �9�, the value of −�G1
TQG1+R�−1G1

TQ, which is denoted
as �, is

� = 

− 135.1 105.1 − 61.5 39.9

− 0.315 − 134.9 105.0 − 61.5

0.17 − 0.414 − 134.9 105.1

− 0.073 0.17 − 0.315 − 135.1
�

A simulated tracking control performance with the target of 7.5
is shown in Fig. 7. From this figure, it can be seen that there is a
delay of 10 samples from the starting of the production run �at
sample index 1� to the process output response. This 10-step delay
comes from a 5-step dead time after the first control input was
added at sample index 5. At t�10, the output quickly achieves
and maintains the target value with a small variation. The noise
standard deviation used in this simulation is 0.01, which is equal
to the estimated �̂e of the modeling residual et.

4.3 Supervisory Strategies

4.3.1 Mean-Shift Detection and Compensation. A CUSUM
chart is designed to monitor a mean shift of the process. The
process mean shift is simulated as �=−1.5�e=−0.015 with �e
=0.01, which is added to the process at t�30. The design param-
eters of the CUSUM chart are �0

	 =0, K= �� /2�=0.0075, and h
=5,�e=0.05. Figure 8�a� shows the mean-shift disturbance func-
tion of f t, and Fig. 8�b� shows the CUSUM monitoring control
chart of 	t in the supervisory GPC. It can be seen that after the
shift occurs at sample 30, the first out-of-control point is detected
at sample k=37 with SL�37�=0.0522�h=0.05. Based on Eq. �18�
with nf =1 and Io

f =1 in the model, the shifted mean at time t
=37 is estimated as �	�37�=−K−SL�37� /N−=−0.015 with N−=7.
Figure 8�a� shows the comparison of the estimated means shift
and true mean shift over different time, in which the dotted line of
the estimated mean shift is very close to the dashed line of the true
mean shift except for the delay period of the detection.

After detecting the mean shift, the supervisory GPC will com-
pensate for it by using the estimated mean shift. As shown in Fig.
9�a�, the controller can quickly compensate for the mean-shift to
bring the output back to the target value. However, without com-
pensating for the mean shift in the controller, the mean-shift dis-
turbance will lead to a mean shift in the process response as
shown in Fig. 9�b�. It is also noted that the compensation control

arison under drift disturbances
is not fully applied to the system until time 42. This is due to the
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5-step dead time after the mean shift is detected at t=37. Thus,
reducing the dead time in the process and having an early detec-
tion of the mean shift will effectively reduce the impact of the
mean-shift disturbance.

The comparison of model errors �differences between the one-
step-ahead predictions and the real measurements of the process�
under the mean shift was also plotted in Fig. 10.

4.3.2 Drift Disturbance Detection and Compensation. To de-
tect a linear drift disturbance using a CUSUM chart, we need to
monitor the random variable �t=	t−	t−1, which has a standard
deviation of ��=�2�e=0.0141 under the in-control condition. The
simulated drift has a slope of �=1.5���=0.0212, which is added
to the process at t�30. The parameters of the CUSUM chart are
defined as �0

� =0, K= �� /2�=0.0106, and h=4���=0.0566. Fig-
ure 11�a� shows the disturbance signal of f t, and Fig. 11�b� shows
the CUSUM monitoring chart. It can be seen that the first out-of-
control point is indicated at time k=33 with SL�33�=0.0716
�0.0566 and N−=4. Similarly, based on Eq. �25� with nf =1 and
Io

f =1 in the model, the drift slope at time t=33 is estimated as
��33�=−0.0285. Figure 11�a� shows the comparison of the esti-
mated slope and the true slope of the linear drift disturbance over
different time, in which the dotted line of the estimated slope is
very close to the dashed line of the true slope except for the
detection delay period.

The comparison of the control performance with and without
compensation of the linear drift is shown in Fig. 12. As it can be
seen from Fig. 12�a�, after a drift disturbance was introduced at
t�30, the process output will experience a short period of large
deviations from the setting point. However, after detecting the
drift at t=33, the supervisory GPC can quickly compensate for the
disturbances at t�38, but the compensation control is not fully
applied to the system until five time intervals after the drift is
detected. Thus, an effective way to reduce the impact of distur-
bance is to reduce the dead time and detect the drift earlier. With-
out the supervisory strategies �i.e., no detection of and compensa-

Fig. 13 Comparison of m
Fig. 14 Control performance compa
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tion for the drift�, the controller output has a linear drift as shown
in Fig. 12�b�. The comparison of model errors �differences be-
tween the one-step ahead predictions and the real measurements
of the process� under a linear drift disturbance was also plotted in
Fig. 13.

4.3.3 Spike Disturbance Detection and Control Law Revision.
It is assumed that a spike, which leads to a 6% deviation in the
output target value, is introduced to the system at time index 30.
The control performance with the supervision in GPC is shown in
Fig. 14�a�. From this figure, it can be seen that a significant de-
viation from the setting point occurs in the output response at data
index 35, which is due to the control reaction �or feedback� to the
spike error added at t=30. The five-step delay is due to the dead
time of the process. Under the supervision, an X-bar control chart
is used to detect the spike disturbance by using the decision rule
defined in Sec. 3.3.2 �b=2 is used in the rule�. Thus, the control
chart detects the spike error at k=37, which indicates a two-step
delay after the spike is shown on the response at t=35. Once the
spike is detected, a supervisory corrective action is taken to re-
move the spike effects using Eq. �35�. It can be seen that the
output tracking errors are reduced significantly at t=37 after re-
moving the spike in the control law calculation. However, due to
the two-step delay in the spike detection, there is no compensation
effort for the first two time indices �t=35,36�. Thus, a significant
deviation from the target is observed at t=35,36. Once a spike
disturbance is confirmed, the supervisory GPC will remove the
influence of the spike from the process and pull the output back to
the normal condition quickly. By comparing Figs. 14�a� and
14�b�, it can be seen that without supervision the output response
at index 37 has a larger deviation than that with supervision.

The effectiveness and importance of having this spike error
removal feature depend on the dynamic characteristic of the pro-
cess model. It will be more desirable to compensate for the spike
error if the impulse response has a long memory of the process
dynamics, which is equivalent to have the poles of the character-

l errors under linear drift
rison under the spike disturbance
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istic equation close to 1. To illustrate this point, Fig. 15 gives a
comparison which shows the effectiveness of the spike compen-
sation technique based on another model. The model parameters
for this model are A�q�=1−0.39q−1−0.126q−2, B�q−1�
=0.003645+0.004168q−1, C�q�=D�q�=1, the dead time of d=5,
and the error term series is generated from et�N�0,10−4�. The
poles of the characteristic equation are 0.6 and −0.21. In this case,
a similar spike, which also leads to about a 6% deviation in the
output target value, is added as the sensor error to demonstrate the
effectiveness of the spike error compensation. It can be seen from
Fig. 15 that without the spike removal the output deviations from
the target at indexes of 37–39 are larger than that with the spike
removal.

5 Conclusion
The control of a thin film deposition process, which can be

modeled by a single-input, single-output �SISO� ARMAX linear
dynamic model, was investigated in this paper. Because of the
inherent characteristics of the thin film deposition process, a GPC
was adopted for the process controller design. A set of supervisory
strategies is used to obtain a satisfactory control performance by
compensating for the different types of disturbances. This paper
emphasizes the importance of developing supervisory strategies
through monitoring the process changes using SPC techniques,
and then revising the controller parameters accordingly to achieve
superior control performance. The integration of SPC with auto-
matic process control �APC� provides great potential for the de-
velopment of effective controllers in complex manufacturing pro-
cesses. The case studies provided validate the effectiveness of the
developed supervisory GPC strategy.

There are several open issues to be investigated further. One is
how to determine the thresholds for the SPC control charts. Be-
cause the SPC is used to monitor a GPC-controlled process, Type
I and Type II errors discussed in the conventional SPC literature
cannot be used directly. Although some research has been done to
investigate the SPC monitoring for a PID-controlled process �14�,
the SPC monitoring for the supervisory GPC control, which is
more complex than the PID control strategy, deserves some fur-
ther attention. Also, a cautious control strategy could be integrated
to accommodate the estimation uncertainty of the process model
and disturbance �15�. Another open issue worth investigating is
how to systematically and simultaneously select �optimal� GPC
parameters �e.g., N, R, etc.�, SPC thresholds, and alternative su-
pervisory strategies. Currently, some trial-and-error efforts are re-

Fig. 15 Control performance under a spi
quired to select those parameters �8�. Another topic related to thin
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film thickness control is to expand the research presented in this
paper from SISO to multiple-input multiple output �MIMO� cases
because there are multiple material sources as well as multiple
quality indices for a thin film deposition process. Some early
works in predictive control based on a state space model can be
considered as a direction for further extension.
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