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1 Introduction tem to its normal condition. This determination of corrective
tion is referred to as root cause analydgl]. Unfortunately,

Dimensional integrity is a major quality concern in many’ e .
discrete-part manufacturing processes, such as assembly and ntrol chart methods are of limited use with respect to root cause

chining. The dimensional variation of a product is affected banalysns; the identification of process variation sources is left pri-

many sources of process variability, e.g., positioning of fiergarlly to human operators. Effective statistical methods that help

: . : rmine pr variation r r n ntly highl
locators, alignment of machine tools, and random deformation Fie © process variation sources are consequently highly

compliant parts. In order to meet high product quality standar gzlﬁglri' specific example of root cause analvsis can be demon-
and reduce defect-induced downtime, manufacturers tend to d P P y

ploy in-process laser-optical coordinate sensors, a recent innO\S/‘gr?ted using the panel assembly process illustrated in Fig. 2. In

X : or : : : - panel assembly, of which automobile body assembly is character-
tion, to obtain 100% inspection of product dimensional qualit Ltic, the workpiecapane) is held by a set of fixtures. Figure 2

characteristics[1]. The in-process measurements collected b ) X ? ;
these automatic-sensing devices yield exceptional opportunit%hsOWS a two-dimensiong?-D) workpiece held by a set of fixtures

for identification of process variation sources responsible fi onsisting of a fou_r-way locatafP,), which controls motion in
product quality problems. ot_h x and z dlrectl_ons(ﬁPl_(x,z)), gnd a two-way locatofP,)

To illustrate, consider the in-process coordinate measurem#ftich controls motion only in the direction(6P,(2)). In order to
system used in the automotive assembly process in Fig. 1. In tA@trol the dimensional quality of the panel, coordinate sensors
process, laser-optical coordinate sensors are installed in a spai@used to monitor dimensional variation of key product features.
frame and measure each automobile body assembly that padBdbis example, three sensors are used to measure three corners of
through. The entire systeicoordinate sensors and sensor framée panel, as shown in Fig. 2. _ _
housing is referred to as an optical coordinate measuring machineSmall positional perturbation of the workpiece exists even
(OCMM). The in-process OCMM can perform parallel measuré¥hen all locators function properly within designed tolerances.
ments of multiple product characteristics and is therefore capal@wever, when there is damage to pinholes or locator wear, the
of measuring as many as 150 product features a minute on #Markpiece will experience large random positional deviation, re-
same automobile body. By comparison, a mechanical coordin&tdting in excessive dimensional variation of the final assembly.
measuring machinéCMM), which takes measurements sequenSuppose locatoP, exhibits a large deviatioP,(z) due to pin-
tially by means of a touch stylus, is substantially slower than dple damage, resulting in a large product variation detectable by
in-process OCMM. A CMM can measure only 6—8 automobilghe sensor ai;. In this instance, the process variation source is
body assemblies per day in a production line having a daifixturing variation, i.e., unacceptably low fixturing repeatability.
throughput of 1000 units. Application of root cause analysis identifies the malfunctioning

Given continuous dimensional measurements, statistical contl@t¢ator pair to be the cause of the excessive dimensional
chart method$2] can be employed to monitor part quality andvariability.
production processes. When a process change is detected by co®ince product dimensional measurement is readily available, a
trol chart analysis, it becomes necessary to determine the apptttical step in performing root cause analysis is to estimate the
priate corrective actions needed to restore the manufacturing sygnitude of process variation based on product measurements. If

a source exhibits variability larger than a specified tolerance, it is
- reasonable to designate it to be the root cause of product dimen-
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body assembly Section 2 presents the formulation for root cause identification

problems. Section 3 briefly reviews the on-line variance estima-
tors and presents their interrelationships and properties. The re-

odology relevant to linear models is variance components analySits of @ comparative analysis of variance estimator performance

(VCA) [5,6]. Although applicable to general linear models, man re presented in Sec_. 4.An oper_ating cha_r_acteriéﬂ)@ curve is
VCA techniques were developed for application domains oth troduced to determine appropriate conditions for the use of these

than process quality control, primarily specifically designed ofStimators. Section 5 revisits the panel assembly process example
line experiments involving random effects in one-way or two-wa nd illustrates estimator properties and the use of the OC curve.

layout models. In addition, variance estimators developed faction 6 provides a brief summary and conclusion.

VCA often use iterative numerical procedures to solve the maxi-

mum likelihood estimatofMLE), restricted maximum likelihood

estimator, and Rao’s iterativeINQUE estimators. These methods?2 Formulation of the Root Cause |dentification Prob-

are as well primarily applicable to off-line experiments wher

sample size is small and computation time is not a concern. For i o o )
on-line variance estimation and quality control in large-scale sys- The first step in identifying the root cause of product quality
tems having potentially large data samples, direct application Bfoblems is to establish a model that links product measurements
the VCA-theory estimators may not be appropriate since thel§eProcess variance sources. In qugllty control applications, devia-
procedures are  computationally costy and tim&on in product/process fe_atures is usually _much smaller than
consuming. nominal values. Hence, a linear model, or a linearization of non-

In contrast, variance estimators have also been developed fBgar systems, is often acceptable for representation of discrete-
signal processing7-9] and quality engineerin§10,11] applica- Part manufacturing processes. The panel assembly process, illus-
tions. In general, these estimators entail closed-form expressidi@ged in Fig. 2, is used as an example to introduce symbolic
and are more cost-effective calculations than the MLE metho@otation and to demonstrate the validity of the linear model. The
particularly for large sample sizes, and are thus more suitable fjplicability of the resulting model is not limited to panel assem-
on-line quality control. The development of on-line variance estRly processes.
mators was often based on a least-squares criterion or followed=or the panel assembly process in Fig. 2, letdenote
empirical intuition. The properties of the resulting estimators hawgeviations at fixturing points such @ and P, andy denote
not been thoroughly evaluated. Issues with respect to differendigyiations measured by coordinate sensors. In this
in the performance of on-line estimators and selection of a prog&ample, u=[P1(x) 6P1(2) Px(2)]" and y
estimator have not been clearly resolved. Consequently, variatepdM(x) SM1(2) SMo(X) SMo(2) SM5(x) SM5(2)]".  Employing
estimation for a specific application can be misconstrued if atandard kinematics analysis, the relationship betwesmdu can
inappropriate estimator is used. As a result, the variation sourdss approximated by a linear model as
that result in poor product quality are still existent and the root . . . .
cause analysiFs) effo[r)t is was?ed. / y)=Aui)+v(, i=1,2,...N, @

To resolve these issues, a comparison of process variation esfirerey(i) € Ré™1 is the measurement vectari) e Re"*1 is the
mation methods is necessary. Several comparative studies hggdom vector op process variation sources, and) e Ré"™! is
been conducted as found in the literat{it@—14. These studies, the additive sensor noise. Matrix can be determined using ki-
Rather they are based on one-way or two-way layout mode{§ossard15], and Carlson et a[16]. The indexi is the sample
which are more applicable to off-line experimental designs thafdex andN is the sample size. For the sake of conveniemge,
root cause identification. i.e., the dimension of, designates the number of sensors, al-

This paper will address the interrelationships among on-lin,,gh it actually equals the product of the number of physical
variance estimators, investigate the statistical properties of thegg,sors and the degrees of freedom measured by each sensor.
estimators, compare performance, and develop convenient tools Q) independent, identically distributed observatiofy(i)}

’ i=1

aid practitioners in selecting the appropriate estimator for specifi : : S . )
needs. The MLE, as developed in VCA theory, will be used asége typically collected for variance estimation of a stationary pro

benchmark reference for comparing the on-line variance estinﬁ%ﬁi‘ '\r/]lqagggﬁ‘l)d%efe?;trgg% d;snggn:]heeardﬁ:i-dcéll\?v?tt;]n?ep{igg‘te:j'
tors presented in this study. ’ P

observations or a linear replicated mo¢&).
Actual manufacturing systems, such as automobile body assem-
bly processes and transfer-line machining processes, typically

P sensor consist of multiple stations. In a multistation process, variation
------- sources can originate in every station and propagate along the
fixture 3Pi(2) production line. Consider thil-station process illustrated in Fig.

locators

4-way locator, positioning - . .
8P (x) <é'variabﬂity intwo directions 3, Where the subscrigk denotes the station index. The product
dimensional deviation is represented by the state vegtand the

workpiece: 8Py(z) L. " . .
apanel o P ____ P 2.way locator, positioning  PTOCESS variation sources at statiorare included as inputg,.
M, variability in one direction 1 he unmodeled errors are represented by a random vagior
while vectorv, still corresponds to sensor noise. The variation
Fig. 2 A simplified fixture setup for a 2-D workpiece propagation in a multistation process can be modeled as
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Xk = Ar1Xier + Beug+wy and  y, = Cixp + vy, 2 Given these assumptions, the covariance relationship between
quality measurementéhaving zero megnand process variation
where A,_;x,, represents the transformation of product dimensources can be obtained from mod#l as
sional deviation from statiolk—1 to stationk, B,u, represents 1o
product deviations resulting from process variations at stdtjon 3 =AY AT+, =300V, (%)
andC, maps product dimensional states to quality measureme%erevj:a_a_T for j=1,...,p, & is thejth column vector ofA,

MatricesA,, By, andCy are again determined through kinematic§/ =I,, and Of)ﬂ:a; {O-jz}})+]:!- constitute thevariance compo-
’ v =

analysis. This station-indexed state space model has been us.erqe sof process variation sourcé@cluding sensor noise vari-

model variation pro%agatlon In vaglous multistation manulfacturlngnce The identification of variation sources is then achieved by
r .g., rigid-par m r 1 mpliant- ) Lo

processes, e.g., rigid-part assembly procekes1d, compliant estimating variance components from observatmg}i“il. Sec-

part assembly processg20], machining processd21-23, and ) . . 1
sheet stretch forming process@sf]. A detailed modeling proce- tion 3 presents several available on-line variance estimators and
their properties.

dure as well as the determination of model paramete#s,jrB,,
andC, can be obtained from these references.
An algebraic transformation can be used to convert mé2)el

into a linear replicated model. First, can be expressed as 3  Variance Estimators and Their Properties

yk=2|k=1Ck<I>k,,B|u|+Ck€Dk’0xo+2:<:1Ck(I>k,|w|+vk, (3) 3.1 Brief Review of Variance Estimators. The following
discussion briefly reviews four types of on-line variance estima-
where®y | =Ay_ 1Ay A for k>1 and®y=I. Vectorx, cor- tors and the MLE method for variance estimation. All discussion
responds to the initial condition of a product prior to entering thg pased on moddtL).
manufacturing line. I, is available,C @, oxo can be moved to ] ) ) )
the left side of Eq(3) andy,—C,® oX, can then be treated as a 3.1.1 Least-Squares (LS) fit estimatdihe basic premise of

additional variation source. Without loss of generalky,can be ence between the estimai@zip"lc}jzvj and the observation co-

=1
set to 0. Combining all available measurements from station tariance matrixS,, whereS, is dJefined as
through statiorM, yields

1
==3N (y(yM. 6
v, u, W, v S N iz (y()y()") (6)
u w v
¥2 =r- :2 +W. :2 + :2 , (4) Namely,
' ' ' min|[%y - S, @)
Ym Um Wn Vm . . i .
where||{| is the Euclidean norm of a matrigi.e., the Frobenius
where norm) and minimization is performed with respect to the estimates
of variance component$st}™}. Denotinge®=[o%--05,,]" and
CiB, 0 0 6?2 as its estimated value, D’Assumpcfd] and Bohme[8] de-

C,®,,B; C,B, 0 rived the LS fit estimator as

{tr(VVIPiz - % = {tr(ViS)MZL, (®

where tf-) is the matrix trace{-}f};ll is a(p+1) X (p+1) matrix,

and{}>!is a(p+1) X 1 column vector.

CM‘DM,lBl CM(DM,ZBZ -+ CuBm

C, 0 -0
C,®,, cC, - 0 3.1.2 Estimator in Ding, Shi, and Ceglarek [11et ved-)
W= L , denote an operator that stacks the columns of a matrix on top of
: : c one another, e.g., VE8)=[s;; S;1 S12 Sp2l" for a 2X 2 symmetric
Cy®yi1 Cu®Py. - Cu S. Using this operator, Eq5) can be written as
andC,=0 if no measurement is available at station ved,) =[m(A) vedl,)]: o’ 9

The model in Eg.(4) becomes equivalent to the linear h : : "
: trix transf defined
replicated model in  Eq. (1) if yT=[y{--yyl, uT wherem(:) Is & matrix transform defined as
=[ul---uf|wi---wh], vi=[vi---v,], and A=[T W], It should m(A)=[(a'*ah)T" --- (@ *anT|---] @*ah)" - (@"*a") ",
be noted that the sample index is not explicitly defined in the (10)

above equations. . )
The linear replicated model in Eql) represents the relation- Wherea' is thejth row vector ofA and+ represents the Hadamard

ship between process variation and product measurement iraduct[25]. ReplacingX, with S, in Eq. (9), 62 is obtained as
manufacturing process and serves as the basis for variance esti- o T 1
mation. For the purposes of this study, it is assumed that: o= ([m(A) vedl)]'[m(A) vedl,)])

o X[m(A) vedl )] - veds,)
(1) The underlying distributions afi andv are normal, _
: o = (') ™" - vedS,)
(2) Noise vectorv has a zero mean, is independentugfand
has the variance-covariance matrdr>§|n (Ip is annxn =II'veds)), (12)
identity matriy, whereg? is sensor noise variance, _ +— (M- T
(3) The p variation sources are independent, such thaas a wherell=[=(A) vedl,)] andIT*= (II'IT) 11",
diagonal covariance matri®,=diago o5---o5}, where  3.1.3 Estimator in Stoica and Nehorai [9For matrix A of
o?is the variance of thith input inu. It is further assumed full column rank, i.e.,ATA is full rank, Stoica and Nehordb]
that u has a zero mean since it represents the deviatiéigfined the estimator
from the designed nominal position. A brief discussion that - te naT a2 N Tanod
considers a nonzero meanis presented in Sec. 4. 2, =ATSAT — g (A'A)
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o5 =tr((1,- AA")S)/(n-p),

whereA*=(ATA)IAT. When random variables in are known
to be independent, as assumed in assumpi®nthe heuristic

1 1
B2 o= S - 2ATAY = STy () ATy (0)T

estimator of{¢?}_, uses the diagonal elements Bf.

3.1.4 Estimator in Apley and Shi [10The variance estimator
in Apley and Shi[10] was also developed for a system in whic
matrix A has full column rank. The estimator in Apley and S

[10] is obtained as follows:

(i) Estimatel(i)=A*y(i) fori=1,... N,

(i) Estimate the variance of: &2=(1/N(n-p))S~07()%(),

whereV(i)=y(i)-Al(i);

(iii )Estimate  the variance
—G5(ATA) S, for j=1, ...
of (i) and(ATA)

of u:

i is the(j,j)™ element o ATA)™2,

a7 =(LIN)S 05
P, where((i) is the jth element

1
-G, (ATA) [ =AT (Nzi“ily(i)(y(i)ﬂ) (ADT - GHATA)

=A-S, - (A)T-GHATA) T (16)

ht is clear that the above result is tlig j)th diagonal element of

I
3, in Eq. (12). Thus, the{af}jp:1 terms in Apley and Shj10]
constitute the diagonal elements®f in Stoica and Nehord].

This estimator is referred to hereinafter as a “diagonal-elements
(DE) estimator.”

A matrix expression of the DE estimator is developed as fol-
lows, and will be used subsequently to analyze estimation
variance.

Let g be thejth column vector of ,. The firstp elements in the
DE estimator can then be expressed as

3.1.5 MLE Given the assumption of normality, the prob- .,

ability density function (p.d.f) of y(i) is defined asf(y(i))

:(277)‘(1’2)”|Eyl‘l’ze‘(l’2>y<‘)T2§1y(i). Denoting the complete set of
observations ag"=[y(1)T y(2)T---y(N)TIN"™¥1 the p.d.f. ofy is

f(y)=Hi’11f(y(i)). The log-likelihood function o, is then

L(2y|y) =In f(y) =- ?n |n(27'r) _ E |n‘2y| _ Etl’(zy_lsy)_

(13

Based on this log-likelihood function, Andersf#6,27 derived

an MLE as a solution to the nonlinear equation

(S VS V)OI 62 = {3V IS (19)

o7,=[o7 -+ 52]"=Q -[(A" @ A")vedS)) - ved(ATA) 1)57],
17

where® is the matrix Kronecker produ¢25], &5 is the same as
in Eq. (12), andQ is defined as

(e @e)T

Q= : (18)
(@6’
From the above, it is evident that the four on-line variance
estimators presented in Sec. 3.1 can be characterized into two

distinct types: the LS fit estimator and the DE estimat@he
MLE is considered an offline estimajoiSome key properties of
the two types of on-line estimators, including existence condition,
unbiasedness, and estimation uncertaifiy., dispersion level

Anderson[26,27] also presented iterative numerical algorithms tare evaluated in the following.

solve Eq.(14).

3.2 Properties of On-Line Variance Estimators.Although

3.2.1 Existence condition of variance estimatofse condi-
tion for DE estimator existence is that'A is full rank andn

the four on-line variance estimators reviewed in the previous seep+1, wherep+1 is the number of independent variance com-
tion appear to significantly differ, some are intrinsically equivaponents, including sensor noise variance. The existence condition
lent, as will be shown in the following. As a result, these foufor an LS fit estimator is thaEI'TI or {tr(ViVj)}i";;ll is full rank.

variance estimators can be grouped into two distinct categories. The existence condition of a variance estimator is related to the
First, it will be shown that the LS fit estimator and the estlmat(go_ca”ed “diagnosab“ity condition” of variance sources, as pre-

in Ding et al.[11] are identical, i.e., thafll TI={tr(V;V))}}Z; and sented in Zhou et a[28]. In general, the diagnosability condition
HT~vec(Sy):{tr(ViSy)}ip;11, as declared by the following Lemmacharacterizes whether or not the observationg céntain enough

(the proof is included in Appendix A
Lemma 1ITI={tr(V;V))}7; andIIT-vedS,) ={tr(V;S)}}.

information to assure that the variance components can be esti-
mated. This condition is independent of specific estimation algo-

This result is not surprising since both variance estimators diYms but should be required as a necessary condition for all
obtained from application of the least-squares criterion. The teifgfiance estimators. Individual variance estimators may, however,
“LS fit estimator” is used hereinafter to refer to both estimatorsf€duire stronger diagnosability conditions. Zhou ef28] defined

Second, it will be shown that the estimator in Apley and SHhe diagnosability condition of variance components for a linear

p+l

[10] comprises the diagonal elements of the estimator proposedgplicated mode(1) as{tr(V;V))}{;z; being full rank, the same as

Stoica and Nehordid] in Eq. (12). The proof is as follows:
Substituting¥(i)=y(i)~Ad (i) and((i)=A*y(i) into &2 in Ap-
ley and Shi[10] yields

. 1 - i
= N 2 0= AT, = AT ()
- N(n;_p)trm 2= AAY) SNy ()y(0)
= (nip) 'tr((ln_AA+) SY)’ (15)

which is the same a&? in Eq. (12).
Further,0;(i)=Ay(i), whereA] is thejth row vector ofA*. &
can then be expressed as

72 | Vol. 127, MARCH 2005

that of an LS fit estimator. The condition thaf A be full rank
andn=p+1 is a stronger condition thatr(V;V)}'2; or IT"II be
full rank. It can be proven that the existence of a DE estimator
guarantees the existence of an LS fit estimator. The result is stated
in Lemma 2 and the proof is included in Appendix B. However,
the converse is not true; i.dI'II could be full rank even iATA
is singular. An example of this occurrence in a multistation assem-
bly process is presented in Sec. 5.

Lemma 21If ATA is full rank andn= p+1, I1"I1 is full rank.

An MLE exists if S is positive definite and/1,Vy, ... Vi
are linearly independenf5,26]. The positive definiteness of
sample varianc&, is usually satisfied in practice since indepen-
dent sensor noise exists having nonzero variances. It is easy to
verify thatV,Vs, ... V. are linearly independent if and only if
II'II is full rank. Therefore, the existence condition for an MLE
is the same as the diagnosability condition for a linear replicated

Transactions of the ASME



model (1) and likewise an LS fit estimator. R PLE ly) p+l

_ _ _ W(o2) =- E( — . (24)
3.2.2 Unbiasedness of variance estimataihenu andv are ﬁoiz&crj

assumed to be zero-mean vectdt6s) =2, i.e., S, is the unbi- Thus, vay,, is approximated as

ased estimate a,, whereE(") is the expectation operator. From )

Eq. (11), it can be readily seen that the LS fit estimator is - A -1/ v-1 +1 )1

ugbiése) y y vay, = (W) = Str{({(S VIV . (29)
The unbiasedness of a DE estimator can be more easily deter,
. - It should be noted that the sample si¢das the same effect on

2
mined from Eq.(12) than from Eq.(17). Note thatE(0}) e dispersion of all three estimators for EG2), (23), and(25).
= tr((ln—AA+)2y)/(n—p)). Applying Eq.(5) yields

ij=1

E(62) = tr((1, - AAT) (A AT+ 621 )/(n - p) 4 Performance Comparison and Selection Guidelines
for On-Line Estimators

=a% -{tr(l,) — tr(AA")}(n - p) : : .
The performance of the two types of on-line variance estima-

=02 {tr(l,) — tr(ATA)*ATA)H(n - p) tors is compared in this section. Since DE and LS fit estimators
=a?{tr(1,) - tr(1 )}(n - p) are both unbiased, estimator dispersion is employed as the crite-

v n P rion for performance comparison. One objective of this compari-

=02 (19) son is to determine the condition under which the LS fit and DE

R estimators may be effective alternatives to MLE for on-line vari-

The expectation o, is then taken as ance estimation. LS fit and DE estimators can be computed using
their closed-form expressions and, consequently, should require

EE,) :A+EyA+T— E(6?) - (ATA) ™. (20) less computation time than the MLE. The primary disadvantage of

the LS fit or DE estimator is that either may demonstrate unac-
Utilizing the results from Eqg5) and(19), it is easy to show that ceptably higher variances than MLE. ygris used as the refer-
E(X,)=3,. Thus, the DE estimator is unbiased. ence for this performance comparison. The relative difference be-
Although an MLE is generally biased, it is asymptotically unfween a DEor LS) estimator and an MLE is characterized by the
biased. On-line estimators have a distinct advantage over an MPgrcentage differenc@iff), defined as

with respect to unbiasedness when the sample size is not large. Valg( g — ValyL
Nevertheless, the MLE bias is not pertinent here since only on- Diffpeongueme = —— ———— X 100 % . (26)
line estimators are being compared. MLE is utilized simply to Valu,

provide a performance reference for comparing estimation uncer-A direct analytical comparison of variance estimators is diffi-
tainty, i.e., the dispersion level, as discussed in the following. cult, if not impossible. To address this issue, a general understand-
ing of the performance of DE and LS fit estimators is provided,

.3'2'3. lespersmn of variance .est|mator‘s'arlance estimator followed by a numerical evaluation to illustrate the conclusions of
dispersion is characterized herein by the trace of its variangg: study.

. o . . I\2
covariance matrix, i.e., VAL peors=(C(oy peons))- The  An'| S fit or DE estimator becomes an MLE estimator under
same criterion has been used for a composite comparison of vaflucial conditions. A DE estimator is an MLE in a noise free
ance estimation in Corbeil and Sedr&]. Since the MLE will be environment: i.e., whenf:O. In this case, when a DE estimator

used as the reference for comparison of DE and LS fit estlmato&jstsl observation of(i) is equivalent to direct observation of

MLE dispersion is also presented. . ; . .
. . . . . u(i). The sample variances computed from direct observation of
First, the variance of* for a DE estimator is derived as RO . - )
v u(i), i=1,... N, are the maximum likelihood estimators of

R zg‘v" {02}!3:1_ Under noise-free conditions, the diagonal elementﬁlpf
Var(&?) = N(n-p)’ (21 (defined in Eq.(12) are the same as the sample variances.of
Therefore, a DE estimator is the MLE {)(frjz}}’:r In contrast, an
whereVar(:) is the variance of a random variable. The completes fit estimator becomes an MLE when the signais not ran-
derivation is given in Appendix C. Using EL7), vaipe can be dom. Randomness in is due solely to sensor noise; i.&,=0
calculated as but af#O. This equivalence can be easily demonstrated by sub-
1 stituting %, =521, into Eq. (14) (ML equation. The results fo>
vang = tr(Co:;(&f p)) +Var(&f) =—tr(Py(l 2+ K)(2y ® gy)pD will be the same as those obtair)ed from ER). (LS fit equation).
’ N Hence, the LS fit and DE estimators are two extreme cases of
the MLE. It is expected that a DE estimator will perform as well

- ;tr(Pl(l 2t Ko, ® Zy)Pg) as an MLE when sensor noise is relatively small, while an LS fit
N(n-p) estimator will perform as well as an MLE when sensor noise is
20° 20 dominant in the process. In order to characterize sensor noise
+1r(P,PJ) — + —, (22) dominance, an average signal-to-noise ré8IR) is defined as
N(n—=p) N(n-p) follows:
where P;=Q-(A*®A"), P,=Q-ved(ATA)™), P3=P,-(vedl, tr(3,)
-AA)T, andK, is as defined in Magnus and Neudecka$]. SNR:_—();, (27)
The complete derivation of E@22) is given in Appendix D. Py
Similarly, the vayg for the LS fit estimator in Eq(11) is where t(Eu)/p:Eip:pizlp is the average signal power amﬁ is

the sensor noise power.

In addition to the SNR, the structure of matAxwill also affect
the estimator variance. However, since the existence of matrix
in dispersion indicator$22), (23), and(25) is complicated, it is

(23 recommended that the percentage differeiiié) versus SNR be

The covariance matrix of an MLE is approximated by the inplotted for a given matriA using Eqs(22), (23), and(25). As an

verse of its Fisher information matr}6], given as example, len=6, p=3, and matrixA be

var s= tr(Cov(679) = %tr(ﬂ*(l et K2, X)),
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lead to more effective design of the system structure of matrix
and subsequently lead to more efficient and accurate estimation of
variance components.

To this point, discussion and methodology development has

250

200 it R progressed under the assumption thig of a zero mean. Whem
DE estimator vs MLE has a nonzero unknown mean, mo@bl can be expressed as
150} = =5 y(i)=Ap,+AUG) +v(i), 1=1,2,...N, (29)
§ S fit estimator vs MLE where g, is an unknown mean and is the zero-mean random
o oo i vector. The variance components to be estimated are associated
90— with T. With respect to DE and LS fit estimators, E¢8), (11),
and (17) can still be employed by replacing, with the sample
=0....... covariance matrix for samples having a nonzero mean; e.g.,
1 N . "
8= o i VO YY) -V, (30
0 e ' e
10° 10" 10’ 10’ 10° wherey is the sample mean of. The resulting estimators are
SNR unbiased, and their existence conditions do not change. Again, the
) ¢ d LS fit esti general behavior presented in the preceding performance compari-
Fig. 4 OC curves for DE and LS fit estimators son is still valid—the same procedures can be used to develop

similar OC curves. A summary comparison of the two types of
estimators is given in Table 1.

1 1 00 0 O

5 Case Study
AT=[-1 -1 11 -1 -1j. (29

The automotive body assembly process described in Sec. 1 is
0 0001 1 used in the following for case study analysis. Two cases are pre-

for which the SNR range is selected to be 0.01, ~100. This SNRnted:(1) an assembly process involving only one station in

range is achieved by fixing? at unit variance, while varying the Which both assembly and inspection operations are performed;

value of t(2,). While the components? in 3, can take different @nd (2) a two-station assembly process in which the assembly
values for a given t&,), for this case a”o,iz are assigned equal operation is performed at the first station and the inspection per-

values; i.e.o?=tr(%,)/p. For instance, if SNR=1, given?=1, formed at the second station.
then t(3,)=1. 3ubsequent|y;ri2:o_333 fori=1,...,3. 5.1 Single-Station Assembly Proces#\ single-station auto-

Diff versus SNR for both DE versus ML and LS versus ML arghotive body assembly process is described and modeled in Apley
plotted in Fig. 4. Figure 4 provides a quantitative characterizatiéid Shi[10] Sec. 4. For this particular problem, there are nine
of the relationship between the two estimators, and is consistéfgasurementén=9) and three independent variation sour¢ps
with the general concept described in the preceding. The graphsi®). The associated matrik given by Apley and Shj10] is
Fig. 4 are referred to as the OC curves for DE and LS fit estima- 093 0 -.093 093 O 647 -1370 0 .64
tors. In practice, the curves are plotted for a given ma#ixo
determine the SNR range over which a DE or an LS fit estimatéy' =| 577 0 0 577 00 577 0 0
demonstrates acceptable performance compared with an MLE. [- 120 0 843 -.120 0 -.120 .482 0 -.1?20
With respect to matriXA in Eq. (28), the point at which the DE (31)
and LS fit estimators exhibit the same performance is approxi-
mately SNR=1(SNR=16). If 10% is selected as the maximumMatrix A in this example is of full column rank and>p+1,
allowed difference from an MLE, then a DE estimator is a googuggesting that both DE and LS fit estimators are applicable. The
alternative for an MLE when SNR2. Similarly, an LS fit esti- OC curve for this system design is presented in Fig. 5.
mator is an effective alternative when SN®.2. In order to evaluate the performance of variance estimators, the

The characteristic relationship between the two types of estim3NR is first estimated from engineering design specifications. The
tors illustrated in Fig. 4 is by and large true for most systergensor used in this example is a type of noncontact coordinate
designs exhibiting the general structure of mathix For some Se€nsor having a regular precision. The specified sensor accuracy is
special structures of matri&, however, there are cases where #60)senso=0-1 mm. In contrast, the tolerance of the pinhole con-
DE and/or LS fit estimator could be exactly the same as an MLEct is roughly 0.2 mm. If the tolerance is approximated by the
regardless of the SNR value. The general conditions concernisig-sigma value, theri6o)ycq10=0.2 mm, implying that the re-
the effects of matrixA merit further study since the results carpeatability of a malfunctioning locator will have a six-sigma value

Table 1 Summarized comparison of on-line variance estimators

DE estimator LS fit estimator
Definition Equationg12) and (17) Equations(8) and (11)
Pros « Closed-form solution, computationally * Closed-form solution, computationally

efficient. efficient.
» Unbiased. * Unbiased.
* Close to MLE when SNR large « Same as MLE if SNR=0.
Cons « Performance deteriorates in noisy » Performs much worse than a DE estimator
environment(small SNR. and an MLE for a large SNR.

Existence » ATA full rank andn=p+1. Stronger « I full rank. Estimator may exist when
condition condition than thafl™II full rank. ATA is singular.
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(a) Station I '—J (b) Station I 7 —n
35 L8 wn wardd : : BEEEY 2 _§ assemhly‘ 2 ¢ 3 ©
s P P : — Vo ! —
H N ¥ i i i i transfer
0D ' i TS H Lo H 14§’ o [e] ? 4&_?] L] o L) o ﬁ“ P
: DE estimator : L ° o L
- I N % @ Pinhole being used & Ppinhole not being used f measurement points
i : : Fig. 6 A two-station assembly process
3‘?20 R A "7 LS fit estimator
5 O D
L . N T TR U
10 I A . . - . . .
Station | are considered. Fixturing variation sources are marked
5 from 1 to 9 in Fig. &a); 1 through 3 represent fixturing variations
in the x direction and 4 through 9 are variations in thdirection.
0 il P I Hence,p,=3, p,=6, andp=p,+p,=9. )
10" 10° 10" Since this process involves more than one station, the state-

SNR space modeling approach outlined in Sec. 2 is employed to gen-
erate the variation propagation model. A detailed modeling proce-
Fig. 5 OC curves for the linear system with A as in Eq. (31)  dure for this example can be found in Jin and B8] and specific
model parameters are given in Ding et [dl1]. The state-space
model was converted to a linear replicated model as

larger than 0.2 mm. Based on this approximation, SNR
= ((60)0cator! (60)senso)>=4. Given an SNR of around 4, a DE ) ) ) ] L
estimator can exhibit a 1% difference from an MLE in terms of ~ Y() =Au() +Vv(i) =[A, A Ju(i)+v(i), i=12,...N,
estimation variance, whereas the difference for an LS fit estimator (32
would be around 18%.

To determine if meaningful guidance can be obtained from t
OC curve, a simulatiorf500 trialg was performed with variance
componentso=[0.0011 0.0025 0.0044 0.00péincluding sen- merical expression of matrik is included in Appendix E. For the

sor nois¢ and a sample size d§=25. The results from the tWo ,noses of this case study, it was assumed that only horizontal
on-line variance estimators are compared in Table 2. MLE resulfs ,nce sources or vertical sources exist, so that Algr A, is

are also included in Table 2 as a reference. The first row in Tahl@a e for variance estimation. This simplified treatment is em-
2 (6?) presents the sample average of variance estimation fromplibyed only to demonstrate different variance estimator perfor-
three estimators and indicates that both the DE and LS fit estirmances. Similarly, both horizontal and vertical variance sources
tors are unbiased. The bias of the MLE in this example is nean be simultaneously estimated using the erirmatrix. First
noticeable. Table 2, Row 2 details the sample variance of eagh e Re'®<? is eva|UatedAIAx is

estimator. The computeliff values(Row 3) are near those pre-

dicted by the OC curve. The simulation result confirms our con-

clusion from the OC curve. The small difference between simula- 4 -2 -2

tion results and the OC curve is due to the fact that the MLE ATA=|-2 2 0 (33)
variance in Eq(25) is actually a large sample approximation. In XX '
real circumstances, the sample size may not satisfy the large -2 0 2
sample requirement.

r\'ﬁhereAX and A, are two blocks in matri¥A, corresponding to
horizontal and vertical fixturing variations, respectively. The nu-

5.2 Multistation Assembly. Figure 6 depicts a two-station which has a rank of 2. In this C""_SAIAX is singular, illustrating a
process, derived as a segment of the simplified automotive bdgifical aspect of many multistation processes, i.e., makroften
assembly process offered in Ding et[dl1]. In this example, three does not have full column rank. )
workpieces are welded together at Station I, with the first work- IN this singular system, the DE estimator cannot be used. The
piece, a subassembly from prior assembly operations, consistfigstence of an LS fit estimator is dependent on the rark,di,,
of two components. Once welding operations are completed, thgerell,=[7(A,) vedl,)]. In this case,
entire assembly is transferred to a dedicated in-process OCMM
station(Station 1)) for inspection. The nine points at which mea-

surements are taken are indicated in Fi¢b)6High-precision 16 4 4 4
laser-optic coordinate sensors are used to measure two directional 40 2
coordinates at each measurement point; thereforé8. Since the HIHX = , (34)
dedicated OCMM station is assumed to be always well main- 04 2
tained, only those variation sources associated with locators on 4 2 2 18
Table 2 Comparison of three estimators for linear system with A as in Equation (31)
DE LS fit MLE
&2 [0.0011 0.0025 0.0044 [0.0011 0.0025 0.0044 [0.0011 0.0025 0.0044
0.0006 0.00064 0.0006
tr(Cov(62)) 3.20x 107 3.58x 1076 3.17x10°®
Diff (%) 1.1% 13.1% —

Note: The true values a#2=[0.0011 0.0025 0.0044 0.00D6
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the preferred MLE performance. Hence, the LS fit estimator may

90 ! ! not be appropriate for use in estimating variance location irzthe
8ol direction, depending on the amplitude of the process SNR.
70l In this multistation example, a dedicated OCMM station houses
highly accurate coordinate sensors Wiwr)senso=0.02 mm. The
60+ OC curve for A, tolerance for fixture locators is the same as before, resulting in an
50 : SNR=100. Thus, the variance of an LS fit estimator can be as
:;:E . i much as 80% greater than that of an MLE. Again, 500 simulation
a trials were run withN=25. The variance estimation sample aver-
30 1 age(Table 3, Row ] indicates that the LS fit estimators are un-
20+ : biased and the bias of the MLE is not noticeable. T values
o OC curve for A, ] are also near those obtained from the OC curve. Hence, the be-
havior of the OC curve in Fig. 7 is verified by the simulation
0 results given in Table 3.
'“1’0-1 16!: “'31 10° 5.3 Computation Time. As mentioned earlier, computation
SNR of an MLE typically involves an iterative procedure and can be
expensive for a large-scale system and a moderately large sample
Fig. 7 OC curves for A ,and A, size. The required computation time was recorded for the three

estimators in each of the above case examples for sample sizes of

N=10, 25, 50, 75, and 100. Estimators were computed usitg

LAB, consequently a relatively longer time was required than simi-
which is of full rank. Hence, an LS fit estimator exists. The Odar computation using C GfoRTRAN programming. However, the
curve for the LS fit estimator is given in Fig. 7, a roughly flat lineobjective here is to determine the relative performance between
near theDiff =0 value. As a result, to estimate variance location iestimators. The time-recording accuracy NATLAB is 0.01 s;
the x direction, an LS fit estimator can be used in place of amerefore, computation time is reported as0:01 s” if the re-
MLE. turned algorithm execution time is zero. All algorithms are ex-

The same evaluation is performed fap e Re'®®. Likewise, ecuted using the same computer platfoffrentium™ |1l CPU

AJA, is also singulatrank=9, howeverIL I, (defined similarly operating at 1.0 GHz
as HIHx) is full rank. Eor conveniencAIAz and HIHZ are not The single-station case example entailed the simplest computa-
computed here, although the OC curve Agris also given in Fig. tional burden. In this case, the dimension of matixis 9X 3,
7. Unfortunately, when the SNR is large, the LS fit estimator for eepresenting a single rigid part with three coordinate sensors. The
system havingd, can exhibit an unacceptable deterioration fromnequired computation time for all LS fit and DE estimators was

Table 3 Simulation comparison of LS fit and ML estimators

LS fit (A MLE (A,) LS fit (A,) MLE (A,)
> [0.0045 0.0003  [0.0045 0.0003  [0.0005 0.0005 0.0014 [0.0005 0.0005 0.0014
0.0003 1.1 10°5] 0.0003 1.1 10°5] 0.0025 0.0005 0.0005 ~ 0.0025 0.0005 0.0005
1.15x 10°9] 1.11x 10°9]
tr(Cov(62)) 1.741x 10°6 1.675% 10° 1.678x 10°° 0.954% 107
Diff (%) 3.97% — 75.93% —
True values [.0045 .0003 .0003, 1.2410°5] [.0005 .0005 .0015 .0025 .0005 .0005, 1<10°5]
30 12000
| —®— MLE in Section 5.1 —A—MLE in Section 5.2
25 | 1 10000
20 + 1 8000
(7] (2]
T -]
S 15 + + 6000 &
(3] (3]
[ 1} Q
(7] (7]
10 | 1 4000
5+ 4 2000
0 A& * . : } 0
10 25 50 75 100
sample size (N)

Fig. 8 Computation time for MLE  (s)
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<0.01 s. The computation time required for the MLE is presentedly expensive MLE is not well suited for high-dimension

in Fig. 8, reading from the left vertical axis. For this simple singl@roblems subject to high productivity requirements.

part case, the MLE computation time is minimal: roughly 26 s for Instances of high data dimension and high throughputs are

a sample size oN=100. The MLE computation requirement is,prevalent in other industries. For example, in a printed circuit

however, much larger than that of either type of on-line estimatajoard assembly process, throughput can be as high as 4000 units

and exhibits a nonlinegexponential increase as the sample sizeper day, which translates to a window of 20 s or less for both

Increases. measurement and decision-making action. Polyester film process-
‘The second case study represents a moderately complex Prog&§$32] involves a total of 308 original variables, although this

with multiple stations. The dimension of matixis 18X 9. The  mper can be reduced to 103 variables depending on the empiri-

values in matrixA were modified slightly to obtain a matrix of ¢4 knowledge of plant engineers. Given in-process sensors ca-
full rank to test DE estimator computation for this example. Th

3 > ) X ) ble of measuring these variables at near real-time, the time pres-
computation times for both DE and LS fit estimators remalnegﬁl J P

2001 s for all sample si The required MLE computation fi re for rapid decision-making increases substantially in order to

= s forall sample sizes. 1he require - computatio .'mfﬁlly utilize new sensor capability. Since a linear model exhibits
for this example is also given in Fig. 8, reading from the righ e same structure as E(l), and is often used to describe the
vertical axis. It is observed that for this two-station process, ML '

A e : - Input-output relationship for both printed circuit board manufac-
computation time foN=75 is approximately 26 mifl570 9 and . . ; .
for N=100 MLE computation will require 2 h, 50 mif9967 , turing and polyester film processifg2,33, the results from this

; . ; . ) . 7' . study are likely to be applicable for quality control in systems
far too long a time for effective use in on-line variance estlmatlon.ther than automotive assembl
As before, MLE computation time exponentially increases a8 Y-

sample size increases.
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The results of study will significantly facilitate efforts support-
ing root cause analysis by enabling rapid and accurate estimation
of underlying variation sources and providing information for cor-
rective action. Shalon et gJ30] and Ceglarek and ShB1] re- Appendix A: Proof of Lemma 1 in Sec. 3.2
ported that dimensional problems contribute to roughly two-thirds . . .
of quality-related problems during new product launch in automo- Proof. Using the definition ofi in Eq. (11), then
tive and aerospace assembly applications. Timely identification
and elimination of variation sources will greatly enhance product
quality and significantly reduce launch time. Meanwhile, evalua- T T
tion of variance estimator properties and comparison of perfor- T _[ m(A)m(A) - m(A) vedly) ]
mances will guide the proper use of estimators for different con- vedl,)Tm(A) vedl,)'vedl,)
ditions. For example, for the multistation example presented in T T,
this paper, fault estimation will fail if a DE estimator is used :[ m(A)mA) - (A) Vedl”)]
arbitrarily. In addition, as illustrated in Fig. 4, for a case where vedl ) "m(A) n
SNR<0.1, an LS fit estimator exhibits a variance more than three
times that of a DE estimator. In other words, a sample size at least ) prl
three times larger is needed to achieve the same estimation add@wever, since/ .=l {tr(V;V))}Pj-; can be expressed as
racy if an LS fit estimator is used. If an MLE is used, an even
longer time may be required to reach a conclusion and the cost of
the delay could be prohibitive. [

(A1)

{r(ViVpiPizy (Vi

The two-station example used in this study is still relatively {tr(V,V )P =
e ICTAAY0) ) LY

simple compared to most actual manufacturing systems. For a
full-scale manufacturing system, the necessity of using DE and LS
fit estimators for on-line quality control is obvious. For instance,
g‘éhe aut(;)mogveGipdustryt)in(—jprochess Q%MMS TearS]ure (l::‘]aCh (F];\Erther, it can be shown thair(A)Tw(A):{tr(ViV,-)}ipj:l and
ody produced. Given a body shop with a daily throughput o _ . _ ’
1000 units(two shifts, a car body assembly passes through aﬁ(A)Tve(ﬂn)—{tr(\_/i)}f’:l- Recalling that t(rABI)TvedA)TvedB.)
OCMM station every 2 min. Allocating one minute for actuafor any symmetric matrice®\ and B, the (i,j)th element in
measurement, roughly one minute is available to the OCMM l{(tr(ViVj)}szl is (vedaia,-T))TvedajajT). In fact, ve¢aa) is theith
make a decision with respect to body assembly acceptancelumn vector in m(A), leading to the conclusion that
process fault identification. In addition, as many as 150 MeasUERoA ) Trr(A) ={tr(V;V)}Pi_;.
ments are taken for a full-sized car body at one OCMM station Following the = same procedure, {tr(V;S)}f
and as many as ten OCMM stations are distributed along an aug%- TT 0o - ' o oyiEL
body shop assembly lifd]. The aggregated measurement vector(Ved&a;)) 'Ve‘_isv)}iﬂ‘”(A)_V‘adsy)' Then, m(A)vedl,)

] : (A2)

bly system could have several hundred variables. Given the coBh! - vedS,) ={tr(V;S,)}" immediately results following a similar
putation time analysis in Sec. 5.3 it is clear that the computatiomatrix partition as in EqstAl) and (A2). O
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Appendix B: Proof of Lemma 2 in Sec. 3.2

Proof. According to the definition ofl in Eq. (11), IT can be
partitioned as

I, e

(A3)
Hn en

whereg is theith column vector of an identity matrix of size

andll; is theith row block defined as

ai *al
IL=| : (A4)
a*a"
Furthermore, Eq(A4) can be expressed as
I =[ay;-ay a8 =+ ap- ) (A5)

where a; is the (i,j)th element inA and & is theith column
vector of A. Given thatA is of full column rank, thefa;}2.’s are

(3, ®3,) - vedl, - AA*) =vedZ, (1, AAY)Z,)
=ved(AS AT+0?1,) - (I,
-AAY) - (A3 AT+0A)))
=ved(l,-AAY) - o?
Further, the following two results can be obtained:
(vedl,—AA")T-(I,2) - vedl , - AA™) - o7
=tr((1,- AAY) - (I,- AAY)) - o
= (tr(l,) - tr(AA™)) - o7
=(tr(1) ~tr(A*A)) -0y =(n=p) - 0},

v

(A11)

(A12)
nd

oY)

(vedl,—AA")T-(K,) - vedl, - AA™Y) - o7
=(vedl,— AAY)T - vedl,—AAY) - o?
=(n-p)-o}, (A13)

in which the resultk ,vedD)=vedDT) was utilized, where is
ann X n matrix, also from Magnus and Neudeckg29], Theorem

linearly independent. For this reason, the column#ljrare also 3-14vii)). Finally, the results fron{A11)~(A13) are substituted
linearly independent, leading to the conclusion that the first into (A10) and to yieldVar(a,)=20,/N(n-p) (Eq. (21)). This
columns inII are also linearly independent. Assume the fiyst result is different from that in Bohmg8], Eq.(16)), as a constant

columns inIl are a linear combination of th@+1)th column.
Then,J a nontrivial vectora=[a;- - ap.1]" such that

Siay g+ apq-e=0fori=1,...n, (AB)
Denoting A =diage;- - @}, EQ. (A6) can be written as
A-A-@)+ap,-e=0fori=1,...n (A7)

All n (fori=1,...n) equations can then be arranged to yield
A-A-AT+ap,-1,=0 (A8)

in which the results of AT=[(@)T---(a)T---(a")"] and I,
=[e;---e,] are used. Given thak is of rankp and A is also of
rank p, the rank ofA -A -AT is at mostp. However,ap, 11, is of
rank n if ay,1#0. Thus, Eq.(A8) cannot hold sincen>p. If
ap1=0, A-A-AT cannot equaD unless al{a;}f, elements are
also zero. This contradiction indicates that the frstolumns in
II are not a linear combination of thip+1)th column. ThudI™II
is of full rank. 0

Appendix C: Derivation of Eqg. (21) in Sec. 3.2

From Eg. (12), it is known thataf:tr((ln—AA*)Sy)/(n—p).
Since ttAB)=vedA)TvedB) for any symmetric matriced and
B, thend’=(vedl,~AA*))TvedS,)/(n—p). Consequently,
Var((vedl, - AA*))vedS,))

(n-p)?
_ (vedl,~AA")T-Cou(vedS))) - vedl, - AA™)
(n-p)? '

Var(6?) =

(A9)
Given Cav(vedS)))=(12+K,)(Z,®3)/N from Magnus and

Neudecker{29], whereK,, is defined as the “commutation ma-

trix,” then
Var(6?)
_ (vedl,- AANDT - (I +Kp) - (Zy ® 3) - vedl,— AAY)
B N(n-p)? '

(A10)
From Eq.(2.1) in Magnus and Neudecké29],
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“2” is generated. It is believed that the difference is due to the fact
thatS, was implicitly assumed to be Toeplitz as in Boh[8§ For
a ToeplitzS,, Cov(vedSy)) =2, ® X, /N. (See Li et al[34] for the

covariance matrix of a Toeplit3,.) O
Appendix D: Derivation of Eqg. (22) in Sec. 3.2
From Eq.(17),
Cov(6% ) =P; - Cav(vedS))) - P; ~ Cou(P; - vedS,),P,55)
+P,PVar(6?), (A14)

given Cov(vedS,))=(1,2+K)(Z,®3,)/N [29] and Var(5?) in
Eq. (21), Eq. (A14) can be expressed as

Cov(6% ) = %Pl (le+Ky)(E,®3%,) P]

4

20
-Cou(P; ,P,52) + P,P) - L
o (Py - vedS)),P,a7) + PyP; N(n—p)

(A15)
It is then necessary to simplify the second tern{Ai15). Recall-
ing that &5:tr((ln—AA*)Sy)/(n—p)z(vedln—AA*))TvedSy)/(n
-p) (see Appendix ¢ this second term becomes

Coo(P; - veds,),P,52) = Cw(Pl : vedsy%nTlpPz(VEd' n
- AA+))TvedSy)>
1
= nTpPl -Cov(vedS)),veds,)) - P

1
= N(n——p)Pl(l 2t Kn)(zy ® Ey)Pg

(A16)
where P;=P,-(vedl,~AA*))T and the result ofCav(veds,))
=(I2+Kp)(Zy® X)) /N is again used. Given EqgAl15) and
(A16), it can be readily verified that the variance of a DE estima-

tor, varDE:tr(Cov(afp))+Var(&5), has the same expression as in
Eq. (22. O
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Appendix E: Matrix A in Eq. (32)

0 00 01215 -03846 O 0 0 0.2632
0O O O 0.0221 -0.0699 0 0 0 0.047,
0O 0 0O 0.1215 -0.3846 O 0 0 0.263]
—0 0 0 -0.1817 0.5944 0 0 0 -0.40
=0 O 0 -0.0773 0.2448 0 0 0 -0.16p=
0O 0 0 -0.3379 1.0699 0 0 0 —-0.7321
L0 0 0 01656 -05245 O 0 0 0.358]
0 0 0 -0.3379 1.0699 0 0 0 -0.7321
A=[A, A= o oo o 0 0 o {
0 0 0O -0.2054 0.6503 0 0 -0.445
=1 1 0 -0.3110 0 04 -04 0.3171
-0 O O 0.0574 0 -0.24 1.24 -1.05
1 1 0 -0.2153 0 0 0 0.215
0 0 0 -0.2392 0 1 0 -0.7608
- 1 0 1 -0.0957 0 0 0 0.4 -0.3043
0 O 0 0.0574 0 0 0 -024 0.18
71 0 1 0 0 0 0 £
=0 0 0 -0.2392 0 0 0 1 -0.76084,4
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