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In-Process Dimensional
Measurements and Control
Dimensional variation reduction is critical to assure high product quality in discrete
manufacturing. Recent innovations in sensor technology enable in-process imple
tion of laser-optical coordinate sensors and continuous monitoring of product d
sional quality. The abundance of measurement data provides an opportunity to d
next generation process control technologies that not only detect process change,
provide guidelines respective of root cause identification. Given continuous prod
mensional measurements, a critical step leading to root cause identification is th
ance estimation of process variation sources. A few on-line variance estimato
available. The focus of this paper is to study the interrelationships and properties
available variance estimators and compare their performance. An operating char
istics curve is developed as a convenient tool to guide the appropriate use of
variance estimators under specific circumstances. The method is illustrated us
amples of dimensional control for a panel assembly process.fDOI: 10.1115/1.1870041g
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1 Introduction
Dimensional integrity is a major quality concern in ma

discrete-part manufacturing processes, such as assembly an
chining. The dimensional variation of a product is affected
many sources of process variability, e.g., positioning of fix
locators, alignment of machine tools, and random deformatio
compliant parts. In order to meet high product quality stand
and reduce defect-induced downtime, manufacturers tend t
ploy in-process laser-optical coordinate sensors, a recent in
tion, to obtain 100% inspection of product dimensional qua
characteristicsf1g. The in-process measurements collected
these automatic-sensing devices yield exceptional opportu
for identification of process variation sources responsible
product quality problems.

To illustrate, consider the in-process coordinate measure
system used in the automotive assembly process in Fig. 1. I
process, laser-optical coordinate sensors are installed in a
frame and measure each automobile body assembly that p
through. The entire systemscoordinate sensors and sensor fra
housingd is referred to as an optical coordinate measuring mac
sOCMMd. The in-process OCMM can perform parallel meas
ments of multiple product characteristics and is therefore ca
of measuring as many as 150 product features a minute o
same automobile body. By comparison, a mechanical coord
measuring machinesCMMd, which takes measurements sequ
tially by means of a touch stylus, is substantially slower tha
in-process OCMM. A CMM can measure only 6–8 automo
body assemblies per day in a production line having a d
throughput of 1000 units.

Given continuous dimensional measurements, statistical co
chart methodsf2g can be employed to monitor part quality a
production processes. When a process change is detected b
trol chart analysis, it becomes necessary to determine the a
priate corrective actions needed to restore the manufacturing
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tem to its normal condition. This determination of correc
action is referred to as root cause analysisf3,4g. Unfortunately
control chart methods are of limited use with respect to root c
analysis; the identification of process variation sources is lef
marily to human operators. Effective statistical methods that
determine process variation sources are consequently h
desirable.

A more specific example of root cause analysis can be de
strated using the panel assembly process illustrated in Fig.
panel assembly, of which automobile body assembly is char
istic, the workpiecespaneld is held by a set of fixtures. Figure
shows a two-dimensionals2-Dd workpiece held by a set of fixtur
consisting of a four-way locatorsP1d, which controls motion i
both x and z directionssdP1sx,zdd, and a two-way locatorsP2d
which controls motion only in thez directionsdP2szdd. In order to
control the dimensional quality of the panel, coordinate sen
are used to monitor dimensional variation of key product feat
In this example, three sensors are used to measure three cor
the panel, as shown in Fig. 2.

Small positional perturbation of the workpiece exists e
when all locators function properly within designed toleran
However, when there is damage to pinholes or locator wea
workpiece will experience large random positional deviation
sulting in excessive dimensional variation of the final assem
Suppose locatorP2 exhibits a large deviationdP2szd due to pin
hole damage, resulting in a large product variation detectab
the sensor atM1. In this instance, the process variation sourc
fixturing variation, i.e., unacceptably low fixturing repeatabi
Application of root cause analysis identifies the malfunctio
locator pair to be the cause of the excessive dimens
variability.

Since product dimensional measurement is readily availab
critical step in performing root cause analysis is to estimate
magnitude of process variation based on product measureme
a source exhibits variability larger than a specified tolerance
reasonable to designate it to be the root cause of product d
sional defects.

If the relationship between product measurement and pr
variation sources can be represented using linear models, s

of

n

variation estimators are available. The principal statistical meth-
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odology relevant to linear models is variance components an
sVCAd f5,6g. Although applicable to general linear models, m
VCA techniques were developed for application domains o
than process quality control, primarily specifically designed
line experiments involving random effects in one-way or two-
layout models. In addition, variance estimators developed
VCA often use iterative numerical procedures to solve the m
mum likelihood estimatorsMLEd, restricted maximum likelihoo
estimator, and Rao’s iterativeMINQUE estimators. These metho
are as well primarily applicable to off-line experiments wh
sample size is small and computation time is not a concern
on-line variance estimation and quality control in large-scale
tems having potentially large data samples, direct applicatio
the VCA-theory estimators may not be appropriate since t
procedures are computationally costly and t
consuming.

In contrast, variance estimators have also been develope
signal processingf7–9g and quality engineeringf10,11g applica-
tions. In general, these estimators entail closed-form expres
and are more cost-effective calculations than the MLE met
particularly for large sample sizes, and are thus more suitab
on-line quality control. The development of on-line variance
mators was often based on a least-squares criterion or foll
empirical intuition. The properties of the resulting estimators h
not been thoroughly evaluated. Issues with respect to differe
in the performance of on-line estimators and selection of a p
estimator have not been clearly resolved. Consequently, var
estimation for a specific application can be misconstrued
inappropriate estimator is used. As a result, the variation so
that result in poor product quality are still existent and the
cause analysis effort is wasted.

To resolve these issues, a comparison of process variation
mation methods is necessary. Several comparative studies
been conducted as found in the literaturef12–14g. These studie
however, are not appropriate for on-line variance estima
Rather they are based on one-way or two-way layout mo
which are more applicable to off-line experimental designs
root cause identification.

This paper will address the interrelationships among on
variance estimators, investigate the statistical properties of
estimators, compare performance, and develop convenient to
aid practitioners in selecting the appropriate estimator for spe
needs. The MLE, as developed in VCA theory, will be used
benchmark reference for comparing the on-line variance es
tors presented in this study.

Fig. 1 Optical coordinate measuring machine for automotive
body assembly
Fig. 2 A simplified fixture setup for a 2-D workpiece
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Section 2 presents the formulation for root cause identific
problems. Section 3 briefly reviews the on-line variance est
tors and presents their interrelationships and properties. Th
sults of a comparative analysis of variance estimator perform
are presented in Sec. 4. An operating characteristicssOCd curve is
introduced to determine appropriate conditions for the use of
estimators. Section 5 revisits the panel assembly process ex
and illustrates estimator properties and the use of the OC c
Section 6 provides a brief summary and conclusion.

2 Formulation of the Root Cause Identification Prob-
lem

The first step in identifying the root cause of product qua
problems is to establish a model that links product measurem
to process variance sources. In quality control applications, d
tion in product/process features is usually much smaller
nominal values. Hence, a linear model, or a linearization of
linear systems, is often acceptable for representation of dis
part manufacturing processes. The panel assembly process
trated in Fig. 2, is used as an example to introduce sym
notation and to demonstrate the validity of the linear model.
applicability of the resulting model is not limited to panel ass
bly processes.

For the panel assembly process in Fig. 2, letu denote
deviations at fixturing points such asP1 and P2 and y denote
deviations measured by coordinate sensors. In
example, u=fdP1sxd dP1szd dP2szdgT and y
=fdM1sxd dM1szd dM2sxd dM2szd dM3sxd dM3szdgT. Employing
standard kinematics analysis, the relationship betweeny andu can
be approximated by a linear model as

ysid = Ausid + vsid, i = 1,2, . . . ,N, s1d

whereysidPRen31 is the measurement vector,usidPRep31 is the
random vector ofp process variation sources, andvsidPRen31 is
the additive sensor noise. MatrixA can be determined using
nematics analysis as found in Apley and Shif10g, Chang an
Gossardf15g, and Carlson et al.f16g. The indexi is the sampl
index andN is the sample size. For the sake of conveniencn,
i.e., the dimension ofy, designates the number of sensors,
though it actually equals the product of the number of phy
sensors and the degrees of freedom measured by each sen

N independent, identically distributed observations,hysidji=1
N ,

are typically collected for variance estimation of a stationary
cess. MatrixA does not vary during the data-collecting proc
Thus, models1d is referred to as a linear model with replica
observations or a linear replicated modelf5g.

Actual manufacturing systems, such as automobile body as
bly processes and transfer-line machining processes, typ
consist of multiple stations. In a multistation process, varia
sources can originate in every station and propagate alon
production line. Consider theM-station process illustrated in F
3, where the subscriptk denotes the station index. The prod
dimensional deviation is represented by the state vectorxk and the
process variation sources at stationk are included as inputsuk.
The unmodeled errors are represented by a random vectowk,
while vector vk still corresponds to sensor noise. The varia

Fig. 3 Diagram of a multistation manufacturing process
propagation in a multistation process can be modeled as
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xk = Ak−1xk−1 + Bkuk + wk and yk = Ckxk + vk, s2d

whereAk−1xk−1 represents the transformation of product dim
sional deviation from stationk−1 to stationk, Bkuk represent
product deviations resulting from process variations at statiok,
andCk maps product dimensional states to quality measurem
MatricesAk, Bk, andCk are again determined through kinema
analysis. This station-indexed state space model has been u
model variation propagation in various multistation manufactu
processes, e.g., rigid-part assembly processesf17–19g, compliant-
part assembly processesf20g, machining processesf21–23g, and
sheet stretch forming processesf24g. A detailed modeling proce
dure as well as the determination of model parameters inAk, Bk,
andCk can be obtained from these references.

An algebraic transformation can be used to convert modes2d
into a linear replicated model. First,yk can be expressed as

yk = Sl=1
k CkFk,lBlul + CkFk,0x0 + Sl=1

k CkFk,lwl + vk, s3d

whereFk,l ;Ak−1Ak−2¯A l for k. l andFk,k; I . Vector x0 cor-
responds to the initial condition of a product prior to entering
manufacturing line. Ifx0 is available,CkFk,0x0 can be moved t
the left side of Eq.s3d andyk−CkFk,0x0 can then be treated as
new measurement. Ifx0 is not available, it can be treated as
additional variation source. Without loss of generality,x0 can be
set to 0. Combining all available measurements from statio
through stationM, yields

3
y1

y2

]

yM

4 = G ·3
u1

u2

]

uM

4 + C ·3
w1

w2

]

wM

4 + 3
v1

v2

]

vM

4 , s4d

where

G = 3
C1B1 0 ¯ 0

C2F2,1B1 C2B2 ¯ 0

] ] � ]

CMFM,1B1 CMFM,2B2 ¯ CMBM

4 ,

C = 3
C1 0 ¯ 0

C2F2,1 C2 ¯ 0

] ] � ]

CMFM,1 CMFM,2 ¯ CM

4 ,

andCk=0 if no measurement is available at stationk.
The model in Eq. s4d becomes equivalent to the line

replicated model in Eq. s1d if yT=fy1
T
¯yM

T g, uT

=fu1
T
¯uM

T uw1
T
¯wM

T g, vT=fv1
T
¯vM

T g, and A =fG Cg. It should
be noted that the sample index is not explicitly defined in
above equations.

The linear replicated model in Eq.s1d represents the relatio
ship between process variation and product measuremen
manufacturing process and serves as the basis for varianc
mation. For the purposes of this study, it is assumed that:

s1d The underlying distributions ofu andv are normal,
s2d Noise vectorv has a zero mean, is independent ofu, and

has the variance-covariance matrixsv
2I n sI n is an n3n

identity matrixd, wheresv
2 is sensor noise variance,

s3d The p variation sources are independent, such thatu has a
diagonal covariance matrixSu=diaghs1

2 s2
2
¯sp

2j, where
si

2 is the variance of theith input inu. It is further assume
that u has a zero mean since it represents the devi
from the designed nominal position. A brief discussion

considers a nonzero meanu is presented in Sec. 4.
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Given these assumptions, the covariance relationship be
quality measurementsshaving zero meand and process variatio
sources can be obtained from models1d as

Sy = ASuA
T + sv

2I n = S j=1
p+1s j

2V j , s5d

whereV j =ajaj
T for j =1, . . . ,p, aj is the j th column vector ofA,

Vp+1= I n, and sp+1
2 =sv

2. hs j
2j j=1

p+1 constitute thevariance compo
nentsof process variation sourcessincluding sensor noise va
anced. The identification of variation sources is then achieve
estimating variance components from observationshysidji=1

N . Sec-
tion 3 presents several available on-line variance estimator
their properties.

3 Variance Estimators and Their Properties

3.1 Brief Review of Variance Estimators. The following
discussion briefly reviews four types of on-line variance est
tors and the MLE method for variance estimation. All discus
is based on models1d.

3.1.1 Least-Squares (LS) fit estimator. The basic premise
the LS fit estimator is to minimize the sum of the squared di

ence between the estimateŜy;S j=1
p+1ŝ j

2V j and the observation c
variance matrixSy, whereSy is defined as

Sy ;
1

N
Si=1

N sysidysidTd. s6d

Namely,

miniŜy − Syi2, s7d

where i·i is the Euclidean norm of a matrixsi.e., the Frobeniu
normd and minimization is performed with respect to the estim
of variance components,hŝ j

2j j=1
p+1. Denotings2;fs1

2
¯sp+1

2 gT and
ŝ2 as its estimated value, D’Assumpcaof7g and Bohmef8g de-
rived the LS fit estimator as

htrsV jV idji,j=1
p+1 · ŝ2 = htrsV iSydji=1

p+1, s8d

where trs·d is the matrix trace,h·ji,j=1
p+1 is a sp+1d3 sp+1d matrix,

and h·ji=1
p+1 is a sp+1d31 column vector.

3.1.2 Estimator in Ding, Shi, and Ceglarek [11]. Let vecs·d
denote an operator that stacks the columns of a matrix on t
one another, e.g., vecsSd=fs11 s21 s12 s22gT for a 232 symmetric
S. Using this operator, Eq.s5d can be written as

vecsSyd = fpsAd vecsI ndg · s2, s9d

whereps·d is a matrix transform defined as

psAd = fsa1 * a1dT
¯ sa1 * andT u ¯ u san * a1dT

¯ san * andTgT,

s10d

whereaj is the j th row vector ofA andp represents the Hadama
productf25g. ReplacingSy with Sy in Eq. s9d, ŝ2 is obtained as

ŝ2 = sfpsAd vecsI ndgTfpsAd vecsI ndgd−1

3fpsAd vecsI ndgT · vecsSyd

= sPTPd−1PT · vecsSyd

= P+vecsSyd, s11d

whereP;fpsAd vecsI ndg andP+;sPTPd−1PT.

3.1.3 Estimator in Stoica and Nehorai [9]. For matrix A of
full column rank, i.e.,ATA is full rank, Stoica and Nehoraif9g
defined the estimator

Ŝu = A+SyA
+T

− ŝ2sATAd−1

v

MARCH 2005, Vol. 127 / 71
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ŝv
2 = trssI n − AA +dSyd/sn − pd, s12d

whereA+;sATAd−1AT. When random variables inu are known
to be independent, as assumed in assumptions3d, the heuristic

estimator ofhsi
2ji=1

p uses the diagonal elements ofŜu.

3.1.4 Estimator in Apley and Shi [10]. The variance estimat
in Apley and Shif10g was also developed for a system in wh
matrix A has full column rank. The estimator in Apley and
f10g is obtained as follows:

sid Estimateûsid=A+ysid for i =1, . . . ,N,
sii d Estimate the variance ofv: ŝv

2=s1/Nsn−pddSi=1
N v̂Tsidv̂sid,

wherev̂sid=ysid−Aûsid;
siii dEstimate the variance of u: ŝ j

2=s1/NdSi=1
N ûj

2sid
−ŝv

2sATAd j ,j
−1, for j =1, . . . ,p, whereûjsid is the j th elemen

of ûsid and sATAd j ,j
−1 is the s j , jdth element ofsATAd−1.

3.1.5 MLE. Given the assumption of normality, the pro
ability density function sp.d.f.d of ysid is defined asfsysidd
=s2pd−s1/2dnuSyu−1/2e−s1/2dysidTSy

−1ysid. Denoting the complete set
observations asyT=fys1dT ys2dT

¯ysNdTgNn31, the p.d.f. ofy is
fsyd=pi=1

N fsysidd. The log-likelihood function ofSy is then

LsSyuyd = ln fsyd = −
Nn

2
lns2pd −

N

2
lnuSyu −

N

2
trsSy

−1Syd.

s13d
Based on this log-likelihood function, Andersonf26,27g derived

an MLE as a solution to the nonlinear equation

htrsŜy
−1V iŜy

−1V jdji,j=1
p+1 ŝ2 = htrsŜy

−1V iŜy
−1Sydji=1

p+1. s14d

Andersonf26,27g also presented iterative numerical algorithm
solve Eq.s14d.

3.2 Properties of On-Line Variance Estimators.Although
the four on-line variance estimators reviewed in the previous
tion appear to significantly differ, some are intrinsically equ
lent, as will be shown in the following. As a result, these f
variance estimators can be grouped into two distinct catego

First, it will be shown that the LS fit estimator and the estim
in Ding et al.f11g are identical, i.e., thatPTP=htrsV iV jdji,j=1

p+1 and
PT·vecsSyd=htrsV iSydji=1

p+1, as declared by the following Lemm
sthe proof is included in Appendix Ad.

Lemma 1. PTP=htrsV iV jdji,j=1
p+1 andPT·vecsSyd=htrsV iSydji=1

p+1.
This result is not surprising since both variance estimator

obtained from application of the least-squares criterion. The
“LS fit estimator” is used hereinafter to refer to both estimato

Second, it will be shown that the estimator in Apley and
f10g comprises the diagonal elements of the estimator propos
Stoica and Nehoraif9g in Eq. s12d. The proof is as follows:

Substitutingv̂sid=ysid−Aûsid and ûsid=A+ysid into ŝv
2 in Ap-

ley and Shif10g yields

ŝv
2 =

1

Nsn − pd
Si=1

N yTsidsI n − AA +dTsI n − AA +dysid

=
1

Nsn − pd
trssI n − AA +d · Si=1

N ysidyTsidd

=
1

sn − pd
· trssI n − AA +d ·Syd, s15d

which is the same asŝv
2 in Eq. s12d.

Further,ûjsid=A j
+ysid, whereA j

+ is the j th row vector ofA+. ŝ j
3

can then be expressed as
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ŝ j
2 =

1

N
Si=1

N ûj
2sid − ŝv

2sATAd j ,j
−1 =

1

N
Si=1

N sA j
+ysiddsA j

+ysiddT

− ŝv
2sATAd j ,j

−1 = A j
+ ·S 1

N
Si=1

N ysidsysiddTD · sA j
+dT − ŝv

2sATAd j ,j
−1

= A j
+ ·Sy · sA j

+dT − ŝv
2sATAd j ,j

−1. s16d

It is clear that the above result is thes j , jdth diagonal element o

Ŝu in Eq. s12d. Thus, thehŝ j
2j j=1

p terms in Apley and Shif10g
constitute the diagonal elements ofŜu in Stoica and Nehoraif9g.
This estimator is referred to hereinafter as a “diagonal-elem
sDEd estimator.”

A matrix expression of the DE estimator is developed as
lows, and will be used subsequently to analyze estim
variance.

Let ej be thej th column vector ofI p. The firstp elements in th
DE estimator can then be expressed as

ŝ1,p
2 ; fŝ1

2
¯ ŝp

2gT = Q · fsA+
^ A+dvecsSyd − vecssATAd−1dŝv

2g,

s17d

where^ is the matrix Kronecker productf25g, ŝv
2 is the same a

in Eq. s12d, andQ is defined as

Q ; 3se1 ^ e1dT

]

sep ^ epdT 4 . s18d

From the above, it is evident that the four on-line varia
estimators presented in Sec. 3.1 can be characterized int
distinct types: the LS fit estimator and the DE estimator.sThe
MLE is considered an offline estimatord. Some key properties
the two types of on-line estimators, including existence cond
unbiasedness, and estimation uncertaintysi.e., dispersion leved
are evaluated in the following.

3.2.1 Existence condition of variance estimators. The condi
tion for DE estimator existence is thatATA is full rank andn
ùp+1, wherep+1 is the number of independent variance c
ponents, including sensor noise variance. The existence con
for an LS fit estimator is thatPTP or htrsV iV jdji,j=1

p+1 is full rank.
The existence condition of a variance estimator is related t

so-called “diagnosability condition” of variance sources, as
sented in Zhou et al.f28g. In general, the diagnosability conditi
characterizes whether or not the observations ofy contain enoug
information to assure that the variance components can be
mated. This condition is independent of specific estimation a
rithms but should be required as a necessary condition fo
variance estimators. Individual variance estimators may, how
require stronger diagnosability conditions. Zhou et al.f28g defined
the diagnosability condition of variance components for a li
replicated models1d ashtrsV iV jdji,j=1

p+1 being full rank, the same
that of an LS fit estimator. The condition thatATA be full rank
andnùp+1 is a stronger condition thanhtrsV iV jdji,j=1

p+1 or PTP be
full rank. It can be proven that the existence of a DE estim
guarantees the existence of an LS fit estimator. The result is
in Lemma 2 and the proof is included in Appendix B. Howe
the converse is not true; i.e.,PTP could be full rank even ifATA
is singular. An example of this occurrence in a multistation as
bly process is presented in Sec. 5.

Lemma 2. If ATA is full rank andnùp+1, PTP is full rank.
An MLE exists if Sy is positive definite andV1,V2, . . . ,Vp+1

are linearly independentf5,26g. The positive definiteness
sample varianceSy is usually satisfied in practice since indep
dent sensor noise exists having nonzero variances. It is ea
verify thatV1,V2, . . . ,Vp+1 are linearly independent if and only
PTP is full rank. Therefore, the existence condition for an M

is the same as the diagnosability condition for a linear replicated
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model s1d and likewise an LS fit estimator.

3.2.2 Unbiasedness of variance estimators. Whenu andv are
assumed to be zero-mean vectors,EsSyd=Sy, i.e., Sy is the unbi-
ased estimate ofSy, whereEs·d is the expectation operator. Fro
Eq. s11d, it can be readily seen that the LS fit estimato
unbiased.

The unbiasedness of a DE estimator can be more easily
mined from Eq. s12d than from Eq. s17d. Note that Esŝv

2d
=strssI n−AA +dSyd / sn−pdd. Applying Eq. s5d yields

Esŝv
2d = trssI n − AA +dsASuA

T + sv
2I ndd/sn − pd

= sv
2 · htrsI nd − trsAA +dj/sn − pd

= sv
2 · htrsI nd − trssATAd−1ATAdj/sn − pd

= sv
2 · htrsI nd − trsI pdj/sn − pd

= sv
2. s19d

The expectation ofŜu is then taken as

EsŜud = A+SyA
+T

− Esŝv
2d · sATAd−1. s20d

Utilizing the results from Eqs.s5d ands19d, it is easy to show tha

EsŜud=Su. Thus, the DE estimator is unbiased.
Although an MLE is generally biased, it is asymptotically

biased. On-line estimators have a distinct advantage over an
with respect to unbiasedness when the sample size is not
Nevertheless, the MLE bias is not pertinent here since only
line estimators are being compared. MLE is utilized simply
provide a performance reference for comparing estimation u
tainty, i.e., the dispersion level, as discussed in the following

3.2.3 Dispersion of variance estimators. Variance estimato
dispersion is characterized herein by the trace of its varia
covariance matrix, i.e., varML,DE,orLS; trsCovsŝML,DE,orLS

2 dd. The
same criterion has been used for a composite comparison o
ance estimation in Corbeil and Searlef13g. Since the MLE will be
used as the reference for comparison of DE and LS fit estima
MLE dispersion is also presented.

First, the variance ofŝv
2 for a DE estimator is derived as

Varsŝv
2d =

2sv
4

Nsn − pd
, s21d

whereVars·d is the variance of a random variable. The comp
derivation is given in Appendix C. Using Eq.s17d, varDE can be
calculated as

varDE = trsCovsŝ1,p
2 dd + Varsŝv

2d =
1

N
trsP1sI n2 + K ndsSy ^ SydP1

Td

−
1

Nsn − pd
trsP1sI n2 + K ndsSy ^ SydP3

Td

+ trsP2P2
Td

2sv
4

Nsn − pd
+

2sv
4

Nsn − pd
, s22d

where P1=Q ·sA+ ^ A+d, P2=Q ·vecssATAd−1d, P3=P2·svecsI n

−AA +ddT, and K n is as defined in Magnus and Neudeckerf29g.
The complete derivation of Eq.s22d is given in Appendix D.

Similarly, the varLS for the LS fit estimator in Eq.s11d is

varLS= trsCovsŝLS
2 dd =

1

N
trsP+sI n2 + K ndsSy ^ SydsP+dTd.

s23d
The covariance matrix of an MLE is approximated by the
verse of its Fisher information matrixf6g, given as
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2 d ; − ESH ]2LsSyuyd

]si
2]s j

2 J
i,j=1

p+1 D . s24d

Thus, varML is approximated as

varML < trsC−1d =
2

N
trhshtrsSy

−1V iSy
−1V jdji,j=1

p+1 d−1j. s25d

It should be noted that the sample sizeN has the same effect
the dispersion of all three estimators for Eqs.s22d, s23d, ands25d.

4 Performance Comparison and Selection Guideline
for On-Line Estimators

The performance of the two types of on-line variance est
tors is compared in this section. Since DE and LS fit estim
are both unbiased, estimator dispersion is employed as the
rion for performance comparison. One objective of this com
son is to determine the condition under which the LS fit and
estimators may be effective alternatives to MLE for on-line v
ance estimation. LS fit and DE estimators can be computed
their closed-form expressions and, consequently, should re
less computation time than the MLE. The primary disadvanta
the LS fit or DE estimator is that either may demonstrate u
ceptably higher variances than MLE. varML is used as the refe
ence for this performance comparison. The relative differenc
tween a DEsor LSd estimator and an MLE is characterized by
percentage differencesDiffd, defined as

Dif fDEsorLSdvsML ;
varDEsLSd − varML

varML
3 100 % . s26d

A direct analytical comparison of variance estimators is d
cult, if not impossible. To address this issue, a general unders
ing of the performance of DE and LS fit estimators is provid
followed by a numerical evaluation to illustrate the conclusion
this study.

An LS fit or DE estimator becomes an MLE estimator un
special conditions. A DE estimator is an MLE in a noise
environment; i.e., whensv

2=0. In this case, when a DE estima
exists, observation ofysid is equivalent to direct observation
usid. The sample variances computed from direct observatio
usid, i =1, . . . ,N, are the maximum likelihood estimators

hs j
2j j=1

p . Under noise-free conditions, the diagonal elements oŜu

sdefined in Eq.s12dd are the same as the sample variancesu.
Therefore, a DE estimator is the MLE ofhs j

2j j=1
p . In contrast, a

LS fit estimator becomes an MLE when the signalu is not ran
dom. Randomness iny is due solely to sensor noise; i.e.,Su=0
but sv

2Þ0. This equivalence can be easily demonstrated by

stituting Ŝy=ŝv
2I n into Eq. s14d sML equationd. The results forŝv

2

will be the same as those obtained from Eq.s8d sLS fit equationd.
Hence, the LS fit and DE estimators are two extreme cas

the MLE. It is expected that a DE estimator will perform as w
as an MLE when sensor noise is relatively small, while an L
estimator will perform as well as an MLE when sensor nois
dominant in the process. In order to characterize sensor
dominance, an average signal-to-noise ratiosSNRd is defined a
follows:

SNR =
trsSud
p · sv

2 , s27d

where trsSud /p=Si=1
p si

2/p is the average signal power andsv
2 is

the sensor noise power.
In addition to the SNR, the structure of matrixA will also affect

the estimator variance. However, since the existence of matA
in dispersion indicatorss22d, s23d, and s25d is complicated, it i
recommended that the percentage differencesDiffd versus SNR b
plotted for a given matrixA using Eqs.s22d, s23d, ands25d. As an

example, letn=6, p=3, and matrixA be
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AT = 3 1 1 0 0 0 0

− 1 − 1 1 1 − 1 − 1

0 0 0 0 1 1
4 . s28d

for which the SNR range is selected to be 0.01, ~100. This
range is achieved by fixingsv

2 at unit variance, while varying th
value of trsSud. While the componentssi

2 in Su can take differen
values for a given trsSud, for this case allsi

2 are assigned equ
values; i.e.,si

2=trsSud /p. For instance, if SNR=1, givensv
2=1,

then trsSud=1. Subsequently,si
2=0.333 fori =1, . . . ,3.

Diff versus SNR for both DE versus ML and LS versus ML
plotted in Fig. 4. Figure 4 provides a quantitative characteriza
of the relationship between the two estimators, and is cons
with the general concept described in the preceding. The grap
Fig. 4 are referred to as the OC curves for DE and LS fit est
tors. In practice, the curves are plotted for a given matrixA to
determine the SNR range over which a DE or an LS fit estim
demonstrates acceptable performance compared with an
With respect to matrixA in Eq. s28d, the point at which the D
and LS fit estimators exhibit the same performance is app
mately SNR=1sSNR=100d. If 10% is selected as the maximu
allowed difference from an MLE, then a DE estimator is a g
alternative for an MLE when SNR.2. Similarly, an LS fit esti
mator is an effective alternative when SNR,0.2.

The characteristic relationship between the two types of es
tors illustrated in Fig. 4 is by and large true for most sys
designs exhibiting the general structure of matrixA. For some
special structures of matrixA, however, there are cases wher
DE and/or LS fit estimator could be exactly the same as an M
regardless of the SNR value. The general conditions conce
the effects of matrixA merit further study since the results c

Table 1 Summarized compariso

DE estimator

Definition Equationss12d and s17d
Pros • Closed-form solution, computa

efficient.
• Unbiased.

• Close to MLE when SNR lar
Cons • Performance deteriorates in

environmentssmall SNRd.
Existence
condition

• ATA full rank andnùp+1. Stro
condition than thatPTP full ran

Fig. 4 OC curves for DE and LS fit estimators
74 / Vol. 127, MARCH 2005
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lead to more effective design of the system structure of matrA,
and subsequently lead to more efficient and accurate estimat
variance components.

To this point, discussion and methodology development
progressed under the assumption thatu is of a zero mean. Whenu
has a nonzero unknown mean, models1d can be expressed as

ysid = Amu + Aũsid + vsid, i = 1,2, . . . ,N, s29d

wheremu is an unknown mean andũ is the zero-mean rando
vector. The variance components to be estimated are asso
with ũ. With respect to DE and LS fit estimators, Eqs.s8d, s11d,
and s17d can still be employed by replacingSy with the sampl
covariance matrix for samples having a nonzero mean; e.g.

Sy =
1

N − 1oi=1

N
sysid − ȳdsysid − ȳdT, s30d

where ȳ is the sample mean ofy. The resulting estimators a
unbiased, and their existence conditions do not change. Agai
general behavior presented in the preceding performance com
son is still valid—the same procedures can be used to de
similar OC curves. A summary comparison of the two type
estimators is given in Table 1.

5 Case Study
The automotive body assembly process described in Sec

used in the following for case study analysis. Two cases are
sented:s1d an assembly process involving only one station
which both assembly and inspection operations are perfor
and s2d a two-station assembly process in which the asse
operation is performed at the first station and the inspection
formed at the second station.

5.1 Single-Station Assembly Process.A single-station auto
motive body assembly process is described and modeled in
and Shif10g Sec. 4. For this particular problem, there are n
measurementssn=9d and three independent variation sourcesp
=3d. The associated matrixA given by Apley and Shif10g is

AT = 3 .093 0 − .093 .093 0 .647 − .370 0 .647

.577 0 0 .577 0 0 .577 0 0

− .120 0 .843 − .120 0 − .120 .482 0 − .120
4 .

s31d

Matrix A in this example is of full column rank andn.p+1,
suggesting that both DE and LS fit estimators are applicable
OC curve for this system design is presented in Fig. 5.

In order to evaluate the performance of variance estimator
SNR is first estimated from engineering design specifications
sensor used in this example is a type of noncontact coord
sensor having a regular precision. The specified sensor accu
s6sdsensor=0.1 mm. In contrast, the tolerance of the pinhole c
tact is roughly 0.2 mm. If the tolerance is approximated by
six-sigma value, thens6sdlocator=0.2 mm, implying that the re
peatability of a malfunctioning locator will have a six-sigma va

f on-line variance estimators

LS fit estimator

Equationss8d and s11d
ally • Closed-form solution, computationally

efficient.
• Unbiased.

• Same as MLE if SNR=0.
sy • Performs much worse than a DE estimator

and an MLE for a large SNR.
r • PTP full rank. Estimator may exist when

ATA is singular.
n o

tion

ge
noi

nge
k.
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larger than 0.2 mm. Based on this approximation, S
ù ss6sdlocator/ s6sdsensord2=4. Given an SNR of around 4, a D
estimator can exhibit a 1% difference from an MLE in terms
estimation variance, whereas the difference for an LS fit estim
would be around 18%.

To determine if meaningful guidance can be obtained from
OC curve, a simulations500 trialsd was performed with varianc
componentss2=f0.0011 0.0025 0.0044 0.0006g sincluding sen
sor noised and a sample size ofN=25. The results from the tw
on-line variance estimators are compared in Table 2. MLE re
are also included in Table 2 as a reference. The first row in T

2 sŝ̄2d presents the sample average of variance estimation fro
three estimators and indicates that both the DE and LS fit es
tors are unbiased. The bias of the MLE in this example is
noticeable. Table 2, Row 2 details the sample variance of
estimator. The computedDiff valuessRow 3d are near those pr
dicted by the OC curve. The simulation result confirms our
clusion from the OC curve. The small difference between sim
tion results and the OC curve is due to the fact that the M
variance in Eq.s25d is actually a large sample approximation.
real circumstances, the sample size may not satisfy the
sample requirement.

5.2 Multistation Assembly. Figure 6 depicts a two-statio
process, derived as a segment of the simplified automotive
assembly process offered in Ding et al.f11g. In this example, thre
workpieces are welded together at Station I, with the first w
piece, a subassembly from prior assembly operations, cons
of two components. Once welding operations are completed
entire assembly is transferred to a dedicated in-process O
stationsStation IId for inspection. The nine points at which me
surements are taken are indicated in Fig. 6sbd. High-precision
laser-optic coordinate sensors are used to measure two direc
coordinates at each measurement point; therefore,n=18. Since th
dedicated OCMM station is assumed to be always well m
tained, only those variation sources associated with locato

Table 2 Comparison of three estimators for

DE

ŝ2 f0.0011 0.0025 0.0044
0.0006g

trsCovsŝ2dd 3.20310−6

Diff s%d 1.1%

2

Fig. 5 OC curves for the linear system with A as in Eq. „31…
Note: The true values ofs =f0.0011 0.0025 0.0044 0.0006g.
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Station I are considered. Fixturing variation sources are ma
from 1 to 9 in Fig. 6sad; 1 through 3 represent fixturing variatio
in thex direction and 4 through 9 are variations in thez direction.
Hence,px=3, pz=6, andp=px+pz=9.

Since this process involves more than one station, the
space modeling approach outlined in Sec. 2 is employed to
erate the variation propagation model. A detailed modeling p
dure for this example can be found in Jin and Shif18g and specifi
model parameters are given in Ding et al.f11g. The state-spac
model was converted to a linear replicated model as

ysid = Ausid + vsid = fAx Azgusid + vsid, i = 1,2, . . .N,

s32d

whereAx and Az are two blocks in matrixA, corresponding t
horizontal and vertical fixturing variations, respectively. The
merical expression of matrixA is included in Appendix E. For th
purposes of this case study, it was assumed that only horiz
variance sources or vertical sources exist, so that onlyAx or Az is
needed for variance estimation. This simplified treatment is
ployed only to demonstrate different variance estimator pe
mances. Similarly, both horizontal and vertical variance sou
can be simultaneously estimated using the entireA matrix. First
AxPRe1833 is evaluated.Ax

TAx is

Ax
TAx = 3 4 − 2 − 2

− 2 2 0

− 2 0 2
4 , s33d

which has a rank of 2. In this case,Ax
TAx is singular, illustrating

critical aspect of many multistation processes, i.e., matrixA often
does not have full column rank.

In this singular system, the DE estimator cannot be used
existence of an LS fit estimator is dependent on the rank ofPx

TPx,
wherePx=fpsAxd vecsI ndg. In this case,

Px
TPx = 3

16 4 4 4

4 4 0 2

4 0 4 2

4 2 2 18
4 , s34d

ear system with A as in Equation „31…

LS fit MLE

0011 0.0025 0.0044
0.0006g

f0.0011 0.0025 0.0044
0.0006g

3.58310−6 3.17310−6

13.1% —

Fig. 6 A two-station assembly process
lin

f0.
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which is of full rank. Hence, an LS fit estimator exists. The
curve for the LS fit estimator is given in Fig. 7, a roughly flat l
near theDif f =0 value. As a result, to estimate variance locatio
the x direction, an LS fit estimator can be used in place o
MLE.

The same evaluation is performed forAzPRe1836. Likewise,

Az
TAz is also singularsrank=5d, however,Pz

TPz sdefined similarly

as Px
TPxd is full rank. For convenienceAz

TAz and Pz
TPz are no

computed here, although the OC curve forAz is also given in Fig
7. Unfortunately, when the SNR is large, the LS fit estimator f
system havingAz can exhibit an unacceptable deterioration fr

Table 3 Simulation compariso

LS fit sAxd MLE sAxd

ŝ̄2 f0.0045 0.0003
0.0003 1.11310−5g

f0.0045 0.0003
0.0003 1.11310−

trsCovsŝ2dd 1.741310−6 1.675310−6

Diff s%d 3.97% —
True values f.0045 .0003 .0003, 1.11310−5g

Fig. 7 OC curves for A x and A z
Fig. 8 Computation t

76 / Vol. 127, MARCH 2005
n
n

a

the preferred MLE performance. Hence, the LS fit estimator
not be appropriate for use in estimating variance location inz
direction, depending on the amplitude of the process SNR.

In this multistation example, a dedicated OCMM station ho
highly accurate coordinate sensors withs6sdsensor=0.02 mm. The
tolerance for fixture locators is the same as before, resulting
SNR=100. Thus, the variance of an LS fit estimator can b
much as 80% greater than that of an MLE. Again, 500 simula
trials were run withN=25. The variance estimation sample a
agesTable 3, Row 1d indicates that the LS fit estimators are
biased and the bias of the MLE is not noticeable. TheDiff values
are also near those obtained from the OC curve. Hence, th
havior of the OC curve in Fig. 7 is verified by the simulat
results given in Table 3.

5.3 Computation Time. As mentioned earlier, computati
of an MLE typically involves an iterative procedure and can
expensive for a large-scale system and a moderately large s
size. The required computation time was recorded for the
estimators in each of the above case examples for sample s
N=10, 25, 50, 75, and 100. Estimators were computed usingMAT-

LAB, consequently a relatively longer time was required than s
lar computation using C orFORTRAN programming. However, th
objective here is to determine the relative performance bet
estimators. The time-recording accuracy inMATLAB is 0.01 s
therefore, computation time is reported as “,0.01 s” if the re
turned algorithm execution time is zero. All algorithms are
ecuted using the same computer platformsPentium™ III CPU
operating at 1.0 GHzd.

The single-station case example entailed the simplest com
tional burden. In this case, the dimension of matrixA is 933,
representing a single rigid part with three coordinate sensors
required computation time for all LS fit and DE estimators

f LS fit and ML estimators

LS fit sAzd MLE sAzd

f0.0005 0.0005 0.0014
0.0025 0.0005 0.0005
1.15310−5g

f0.0005 0.0005 0.0014
0.0025 0.0005 0.0005
1.11310−5g

1.678310−6 0.954310−6

75.93% —
f.0005 .0005 .0015 .0025 .0005 .0005, 1.11310−5g
n o

5g
ime for MLE „s…

Transactions of the ASME



nte
gle
fo

is,
ato
ize

roc

of
Th
ine
tim
igh

L

tion
a

tra
to

pria
le
s e
at
rin

rt-
at
or

ird
mo
atio
du
lua
rfo
con
d
ed
er
hre
lea
ac
ve
ost

ely
or
d L
ce

h c
t o
a

ual
t

an
su
tio
au
cto
-
co

ion

are
rcuit
0 units
both
cess-

this
mpiri-
rs ca-
pres-
er to
ibits
the
fac-
s
ms

the
ining
rants

tate
512-

at

,
ar
,0.01 s. The computation time required for the MLE is prese
in Fig. 8, reading from the left vertical axis. For this simple sin
part case, the MLE computation time is minimal: roughly 26 s
a sample size ofN=100. The MLE computation requirement
however, much larger than that of either type of on-line estim
and exhibits a nonlinearsexponentiald increase as the sample s
increases.

The second case study represents a moderately complex p
with multiple stations. The dimension of matrixA is 1839. The
values in matrixA were modified slightly to obtain a matrix
full rank to test DE estimator computation for this example.
computation times for both DE and LS fit estimators rema
,0.01 s for all sample sizes. The required MLE computation
for this example is also given in Fig. 8, reading from the r
vertical axis. It is observed that for this two-station process, M
computation time forN=75 is approximately 26 mins1570 sd and
for N=100 MLE computation will require 2 h, 50 mins9967 sd,
far too long a time for effective use in on-line variance estima
As before, MLE computation time exponentially increases
sample size increases.

6 Concluding Remarks
A variance estimator for linear replicated models is of cen

importance in identifying sources of variation. Variance estima
with closed-form expressions are demonstrably more appro
for on-line quality control than an MLE, which require multip
numerical iterations to achieve convergence. This paper ha
posed the intrinsic relationship among several variance estim
developed for signal processing and quality enginee
applications.

The results of study will significantly facilitate efforts suppo
ing root cause analysis by enabling rapid and accurate estim
of underlying variation sources and providing information for c
rective action. Shalon et al.f30g and Ceglarek and Shif31g re-
ported that dimensional problems contribute to roughly two-th
of quality-related problems during new product launch in auto
tive and aerospace assembly applications. Timely identific
and elimination of variation sources will greatly enhance pro
quality and significantly reduce launch time. Meanwhile, eva
tion of variance estimator properties and comparison of pe
mances will guide the proper use of estimators for different
ditions. For example, for the multistation example presente
this paper, fault estimation will fail if a DE estimator is us
arbitrarily. In addition, as illustrated in Fig. 4, for a case wh
SNR,0.1, an LS fit estimator exhibits a variance more than t
times that of a DE estimator. In other words, a sample size at
three times larger is needed to achieve the same estimation
racy if an LS fit estimator is used. If an MLE is used, an e
longer time may be required to reach a conclusion and the c
the delay could be prohibitive.

The two-station example used in this study is still relativ
simple compared to most actual manufacturing systems. F
full-scale manufacturing system, the necessity of using DE an
fit estimators for on-line quality control is obvious. For instan
in the automotive industry in-process OCMMs measure eac
body produced. Given a body shop with a daily throughpu
1000 unitsstwo shiftsd, a car body assembly passes through
OCMM station every 2 min. Allocating one minute for act
measurement, roughly one minute is available to the OCMM
make a decision with respect to body assembly accept
process fault identification. In addition, as many as 150 mea
ments are taken for a full-sized car body at one OCMM sta
and as many as ten OCMM stations are distributed along an
body shop assembly linef1g. The aggregated measurement ve
yT=fy1

T
¯yM

T g scorresponding to Eq.s4dd for a multistation assem
bly system could have several hundred variables. Given the

putation time analysis in Sec. 5.3 it is clear that the computatio
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ally expensive MLE is not well suited for high-dimens
problems subject to high productivity requirements.

Instances of high data dimension and high throughputs
prevalent in other industries. For example, in a printed ci
board assembly process, throughput can be as high as 400
per day, which translates to a window of 20 s or less for
measurement and decision-making action. Polyester film pro
ing f32g involves a total of 308 original variables, although
number can be reduced to 103 variables depending on the e
cal knowledge of plant engineers. Given in-process senso
pable of measuring these variables at near real-time, the time
sure for rapid decision-making increases substantially in ord
fully utilize new sensor capability. Since a linear model exh
the same structure as Eq.s1d, and is often used to describe
input-output relationship for both printed circuit board manu
turing and polyester film processingf32,33g, the results from thi
study are likely to be applicable for quality control in syste
other than automotive assembly.
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Appendix A: Proof of Lemma 1 in Sec. 3.2

Proof. Using the definition ofP in Eq. s11d, then

PTP = F psAdTpsAd psAdTvecsI nd
vecsI ndTpsAd vecsI ndTvecsI nd G

= F psAdTpsAd psAdTvecsI nd
vecsI ndTpsAd n

G . sA1d

However, sinceVp+1= I n, htrsV iV jdji,j=1
p+1 can be expressed as

htrsV iV jdji,j=1
p+1 = FhtrsV iV jdji,j=1

p htrsV idji=1
p

shtrsV idji=1
p dT n

G . sA2d

Further, it can be shown thatpsAdTpsAd=htrsV iV jdji,j=1
p and

psAdTvecsI nd=htrsV idji=1
p . Recalling that trsABd=vecsAdTvecsBd

for any symmetric matricesA and B, the si , jdth element in
htrsV iV jdji,j=1

p is svecsaiai
TddTvecsajaj

Td. In fact, vecsaiai
Td is theith

column vector in psAd, leading to the conclusion th
psAdTpsAd=htrsV iV jdji,j=1

p .
Following the same procedure, htrsV iSydji=1

p

=hsvecsaiai
TddT·vecsSydji=1

p =psAdTvecsSyd. Then, psAdTvecsI nd
=htrsV idji=1

p constitutes a special case whenSy= I n. Moreover
PT·vecsSyd=htrsV iSydji=1

p+1 immediately results following a simil

n-matrix partition as in Eqs.sA1d and sA2d. h
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Appendix B: Proof of Lemma 2 in Sec. 3.2
Proof. According to the definition ofP in Eq. s11d, P can be

partitioned as

P =3
P1 e1

] ]

Pi ei

] ]

Pn en

4 , sA3d

whereei is the ith column vector of an identity matrix of sizen
andPi is the ith row block defined as

Pi = 3ai pa1

]

ai pan4 . sA4d

Furthermore, Eq.sA4d can be expressed as

Pi = fai1 ·a1 ai2 ·a2 ¯ aip ·apg sA5d

where aij is the si , jdth element inA and ai is the ith column
vector ofA. Given thatA is of full column rank, thehaiji=1

p ’s are
linearly independent. For this reason, the columns inPi are also
linearly independent, leading to the conclusion that the firp
columns inP are also linearly independent. Assume the firp
columns inP are a linear combination of thesp+1dth column.
Then,∃ a nontrivial vectora=fa1¯ap+1gT such that

S j=1
p a jaij ·aj + ap+1 ·ei = 0 for i = 1, . . . ,n, sA6d

DenotingL=diagha1¯apj, Eq. sA6d can be written as

A · L · saidT + ap+1 ·ei = 0 for i = 1, . . . ,n sA7d

All n sfor i =1, . . . ,nd equations can then be arranged to yield

A · L ·AT + ap+1 · I n = 0 sA8d

in which the results of AT=fsa1dT
¯ saidT

¯ sandTg and I n

=fe1¯eng are used. Given thatA is of rank p and L is also of
rank p, the rank ofA ·L ·AT is at mostp. However,ap+1·I n is of
rank n if ap+1Þ0. Thus, Eq.sA8d cannot hold sincen.p. If
ap+1=0, A ·L ·AT cannot equal0 unless allhaiji=1

p elements ar
also zero. This contradiction indicates that the firstp columns in
P are not a linear combination of thesp+1dth column. ThusPTP
is of full rank. h

Appendix C: Derivation of Eq. (21) in Sec. 3.2

From Eq. s12d, it is known that ŝv
2=trssI n−AA +dSyd / sn−pd.

Since trsABd=vecsAdTvecsBd for any symmetric matricesA and
B, thenŝv

2=svecsI n−AA +ddTvecsSyd / sn−pd. Consequently,

Varsŝv
2d =

VarssvecsI n − AA +ddTvecsSydd
sn − pd2

=
svecsI n − AA +ddT ·CovsvecsSydd · vecsI n − AA +d

sn − pd2 .

sA9d

Given CovsvecsSydd=sI n2+K ndsSy ^ Syd /N from Magnus an
Neudeckerf29g, whereK n is defined as the “commutation m
trix,” then

Varsŝv
2d

=
svecsI n − AA +ddT · sI n2 + K nd · sSy ^ Syd · vecsI n − AA +d

Nsn − pd2 .

sA10d

From Eq.s2.1d in Magnus and Neudeckerf29g,

78 / Vol. 127, MARCH 2005
sSy ^ Syd · vecsI n − AA +d = vecsSysI n − AA +dSyd

= vecssASuA
T + sv

2I nd · sI n

− AA +d · sASuA
T + sv

2I ndd

= vecssI n − AA +d) · sv
4 sA11d

Further, the following two results can be obtained:

svecsI n − AA +ddT · sI n2d · vecsI n − AA +d · sv
4

= trssI n − AA +d · sI n − AA +dd · sv
4

= strsI nd − trsAA +dd · sv
4

= strsI nd − trsA+Add · sv
4 = sn − pd · sv

4, sA12d
and

svecsI n − AA +ddT · sK nd · vecsI n − AA +d · sv
4

= svecsI n − AA +ddT · vecsI n − AA +d · sv
4

= sn − pd · sv
4, sA13d

in which the resultK nvecsDd=vecsDTd was utilized, whereD is
ann3n matrix, also from Magnus and Neudeckersf29g, Theorem
3.1-svii dd. Finally, the results fromsA11d–sA13d are substitute
into sA10d and to yieldVarsŝv

2d=2sv
4/Nsn−pd sEq. s21dd. This

result is different from that in Bohmesf8g, Eq. s16dd, as a constan
“2” is generated. It is believed that the difference is due to the
thatSy was implicitly assumed to be Toeplitz as in Bohmef8g. For
a ToeplitzSy, CovsvecsSydd=Sy ^ Sy/N. sSee Li et al.f34g for the
covariance matrix of a ToeplitzSy.d h

Appendix D: Derivation of Eq. (22) in Sec. 3.2
From Eq.s17d,

Covsŝ1,p
2 d = P1 ·CovsvecsSydd ·P1

T − CovsP1 · vecsSyd,P2ŝv
2d

+ P2P2
TVarsŝv

2d, sA14d

given CovsvecsSydd=sI n2+K ndsSy ^ Syd /N f29g and Varsŝv
2d in

Eq. s21d, Eq. sA14d can be expressed as

Covsŝ1,p
2 d =

1

N
P1 · sI n2 + K ndsSy ^ Syd ·P1

T

− CovsP1 · vecsSyd,P2ŝv
2d + P2P2

T ·
2sv

4

Nsn − pd
.

sA15d
It is then necessary to simplify the second term insA15d. Recall-
ing that ŝv

2=trssI n−AA +dSyd / sn−pd=svecsI n−AA +ddTvecsSyd / sn
−pd ssee Appendix Cd, this second term becomes

CovsP1 · vecsSyd,P2ŝv
2d = CovSP1 · vecsSyd,

1

n − p
P2svecsI n

− AA +ddTvecsSydD
=

1

n − p
P1 ·CovsvecsSyd,vecsSydd ·P3

T

=
1

Nsn − pd
P1sI n2 + K ndsSy ^ SydP3

T

sA16d

where P3=P2·svecsI n−AA +ddT and the result ofCovsvecsSydd
=sI n2+K ndsSy ^ Syd /N is again used. Given Eqs.sA15d and
sA16d, it can be readily verified that the variance of a DE esti
tor, varDE=trsCovsŝ1,p

2 dd+Varsŝv
2d, has the same expression a
Eq. s22d. h
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Appendix E: Matrix A in Eq. (32)

A = fAx Azg =







0 0 0 0.1215 − 0.3846 0 0 0 0.2632

0 0 0 0.0221 − 0.0699 0 0 0 0.0478

0 0 0 0.1215 − 0.3846 0 0 0 0.2632

0 0 0 − 0.1817 0.5944 0 0 0 − 0.4067

0 0 0 − 0.0773 0.2448 0 0 0 − 0.1675

0 0 0 − 0.3379 1.0699 0 0 0 − 0.7321

0 0 0 0.1656 − 0.5245 0 0 0 0.3589

0 0 0 − 0.3379 1.0699 0 0 0 − 0.7321

0 0 0 0 0 0 0 0 0

0 0 0 − 0.2054 0.6503 0 0 0 − 0.445

− 1 1 0 −0.3110 0 0.4 − 0.4 0 0.311

0 0 0 0.0574 0 − 0.24 1.24 0 − 1.0574

− 1 1 0 −0.2153 0 0 0 0 0.2153

0 0 0 − 0.2392 0 1 0 0 − 0.7608

− 1 0 1 −0.0957 0 0 0 0.4 − 0.3043

0 0 0 0.0574 0 0 0 − 0.24 0.1826

− 1 0 1 0 0 0 0 0 0

0 0 0 − 0.2392 0 0 0 1 − 0.7608




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