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ABSTRACT 
Severe competition in US steel industry urges 
quality improvements in hot rolling processes. 
Surface defects have been a long-standing 
troubling issue in hot rolling processes due to the 
ineffectiveness of existing detection methods. This 
paper presents an advanced statistical analysis 
method to identify the impacting factors in surface 
defects of hot rolling processes. The surface 
defects on the steel is measured by a new sensing 
system, the “HotEye” imaging system. The process 
variables considered in this paper include the heat 
number, strand number, and billet-location. Due to 
the structural characteristic of the data, multilevel 
analysis is presented to help identify the 
relationships between the process variables and 
the number of surface defects. A detailed case 
study is presented to illustrate the effectiveness of 
this method. The result obtained can provide 
guidelines for root cause identification and quality 
improvement of hot rolling processes. 
 
INRODUCTION    
Due to economic globalization, the US steel 
industry is facing severe competition from foreign 
competitors. To succeed in this environment, the 
American steel industry must significantly improve 
productivity and quality, and reduce scrap and 
waste during production. In addition to economic 

considerations, the environmental concerns and 
energy consumption requirements also strongly 
drive the steel industry toward that direction.  
Therefore, there is an urgent need from steel 
industry for efficient process quality control.   

Hot rolling is among the key processes that convert 
cast or semi-finished steel into finished products.  
Since the rolling operation is often the last process 
step, the scrap at rolling stage is very costly and 
hence the quality control of rolling process is very 
important.  Among all the quality concerns, the 
surface integrity is an extremely important quality 
characteristic of the hot rolled products.  Surface 
defects remain as a weakness or stress 
concentration site of the bulk material and hence 
could cause catastrophic failure when the rolled 
product is in use.  Products with severe surface 
defects have to be scrapped.  Therefore, it is highly 
desired to detect, reduce, and eventually eliminate 
the surface defects if possible. Unfortunately, the 
surface defects remain as the most troubling 
problems in the hot rolling process. Major 
challenges in the surface quality control fall into the 
following two aspects. 

(1)  Effective surface sensing system to measure 
the surface condition in real-time during production 
environments (high temperature, high speed, 
noise, and dirty conditions) is not available.   
(2) The root causes of surface defects in hot rolling 
processes are very complicated. Surface defects 
could be originated from multiple sources.  For 
example, the nonmetallic impurities in the billet 



during solidification as well as the mechanical 
failures in the rolling mills are all important potential 
sources of surface defects. The current knowledge 
of the root causes of surface defects in hot rolling 
process is very limited.  

Due to the aforementioned challenges, although 
the dimensional dynamic control of rolling 
processes is well-developed (Ginzburg 1993, 
Lenard and Pietrzyk 1999), current quality control 
of surface defects in hot rolling process is very 
primitive. The understanding of the physics of the 
root causes of the surface defects is very limited.  
This makes surface defects the leading dragging 
issues in the improvement of quality and 
productivity in steel manufacturing processes.   

There are very few attempts on the analysis of the 
surface defects. Eddy-current based sensing 
system is widely used in industry for non-
destructive testing (Collins et al. 1996) of 
imperfections in hot rolling process.  However, it 
must be very close to the hot surface (typically less 
than 2.5 mm). The testing result is not quantitative, 
and it cannot detect certain types of defects (Judd, 
1996). Some other surface inspection systems 
tried to utilize high power radiant light sources 
(Rinn and Thompson, 2000) to overpower the self-
emitting radiation of hot steel.  However, the 
working temperature of these systems is limited to 
several hundreds Celsius degree. Sugimoto and 
Kawaguchi (1998) developed a surface inspection 
system using the self-radiant light from the hot 
steel. This system senses the temperature 
deviations caused by the surface defects. It will be 
difficult to detect very thin surface defects such as 
seams on the surface. Due to the insufficient 
inspection capability, little research has been done 
on the root cause analysis of surface defects.  The 
British Iron and Steel Research Association (Ingot 
Surface Defects Sub-committee, 1955) and the 
American Iron and Steel Institute (AISI) (AISI, 
1996) provided a qualitative classification of the 
surface defects of the hot rolled surfaces. Only 
some preliminary research on automatic 
classification of surface defects on the hot rolled 
steel is reported (Caleb and Steuer, 2000, Simonis 
and Rinn, 1998, and Vascotto, 1996). The 
developed algorithms often need intensive training. 
These technologies are not well adopted in 
practice.  No systematic quantitative research on 
the relationships among the process variables and 
product surface quality has been reported. In many 
situations, the defects were unknown to the steel 
maker until they receive complains or stock returns 
from the end users.  A vast amount waste, in 
material, energy, and transportation, has occurred. 
The quick hot surface defects detection and root 
cause identification has been identified as one of 
the major research thrusts by AISI (AISI 2001). 

Recently, the development of an image inspection 
system, the so-called “HotEye” technology, 
provides a reliable, accurate on-line surface 
measurement technology for hot rolling processes.  
The system can give a sharp image of the hot 
surface up to 1550°C (Fig. 1).  The measurement 
resolution can be up to 0.02mm and the 
measurement speed can be up to 100m/s rolled 
billet surface.   
HotEye provides a unique opportunity to develop a 
quantitative real-time in-process surface quality 
inspection and diagnosis system for the hot rolling 
process. In this paper, we focus on the study on 
the quantitative relationship between the process 
parameters and the number of surface defects 
based on systematic statistical analysis. With this 
quantitative relationship, we can provide guidelines 
on the identification and elimination of root causes 
of the surface defects.  

   
(a)    (b) 

    
(c)   (d) 

FIGURE 1.  DIFFERENCE OF HOTEYE AND A 
REGULAR CCD CAMERA. (a) A thermal couple tip, 
with artificial marks, at room temperature (regular 
CCD); (b) Same tip, at 1,100°C (regular CCD); (c) 
Same tip, at 1,350°C (regular CCD); (d) Same tip, at 
1,375°C (Image by HotEye technology). 

This paper is organized as follows. The layout of a 
typical rolling process and the corresponding 
sensing system are introduced in Section 2. The 
quantitative relationship between process 
parameters and product quality is investigated in 
Section 3 using multi-level regression technique. 
Concluding remarks and future works are 
discussed in the last section. 
 
INTRODUCTION TO THE SENSING SYSTEM 
FOR HOT ROLLING PROCESSES 
Hot rolling process is a very complicated process. 
Figure 2 illustrates a layout of a sensing system of 
a hot rolling process. The whole process can be 



classified as two sub-processes: casting process 
and progressive rolling process. 

The purpose of casting process is to produce 
billets for later-on progressive rolling process. In 
the casting process, ingots and scraps are charged 
into a bowl-shaped ladle and heated in the furnace. 
The melted steel is then poured into a tundish and 
ready for continuous casting. Four strands of steel 
simultaneously come out of the tundish (to be brief, 
only one strand is illustrated in Figure 2). Each 
strand has a separate mold for continuous casting. 
Usually, steels that come out from the same 
furnace at the same time are grouped as a heat. A 
whole heat can be further classified into four 
strands according to the strand where the steels 
are molded. Steels from each strand will be cut to 
10∼ 12 billets by scorch. The sequence of a billet 
that comes out from a strand is denoted as billet-
location. Thus we can refer to a specific billet 
according to a triplet < heat number, strand 
number, billet-location >. For example, < 123000, 
2, 5 > represents a billet that comes from heat 
123000, and it is the fifth billet molded by second 
strand.  

FIGURE 2.  LAYOUT OF A HOT ROLLING 
PROCESS. 

Progressive rolling process is committed 
consecutively at several (14∼ 48) stands. The 
diameter of the billet is reduced every time it 
passes through a stand. At the end of the 
progressive rolling process, the billet is coiled for 
shipping.  

HotEye is located at the last few stands of the 
progressive rolling process to measure the 
possible defects on the billet surface. The defects 
captured by HotEye can be taken as a quality 
measurement of product surface quality. Based on 
the process sensing information and surface 
quality information, statistical analysis driven by 
engineering knowledge for monitoring, diagnosis, 
and control can thus be implemented to identify the 
relationship between process variables and 
product surface quality. 

Figure 3 is a seam picture detected by “HotEye” 
system. The brighter band in the center is the 
surface of the steel. In addition, the sharply 
contrasted, slim, dark line within the brighter 
band is a captured seam. Based on the 
information provided by “HotEye”, we may know 
how many seams there are on a billet surface 
and where the seam is located. Moreover, we 
can roughly estimate the overall length of seams 
on one billet to rate the severity of the defects. 

 
FIGURE 3.  SAMPLE IMAGE OF SEAM DEFECT 
DETECTED BY HOTEYE. 

Huge amount of sensing information data is 
available because of the highly modernized rolling 
control process. Among them, three fields (heat, 
strand, and billet-location) might be the most 
important causes of the large variation in the hot 
rolling process. Some physical interpretations 
support the hypothesis. Considering the complexity 
of casting process, a large amount of uncertainties 
may exist in the material component. Billets from 
the same heat are highly likely to have similar 
physical properties. Many control parameters (such 
as mold temperature, oil moisture, spray system 
parameters, etc.) are involved with the strand 
number (range from 1 to 4). During the continuous 
casting, it is very likely that the billets molded at the 
same strand tend to have the same effects on the 
number of defects per billet. Billet-location (range 
from 1 to 12) where a billet is sequenced within all 
the billets that passed the same strand might also 
play an important roll since it is very likely that the 
billets sequenced at the same location might have 
experienced the similar working environment and 
thus might have the similar behaviors.  

Table 1 is an abbreviated portion of the sensing 
information table (Some listed data are modified 
due to privacy consideration). Here we will only 
show and briefly introduce the fields that will be 
used for data analysis later in this paper. “Billet ID” 
is a unique ID assigned to a given billet; “Heat” and 
“Strand” are the heat number and strand number of 
a billet which may date back where the billet comes 
from; “Billet Speed” is the average speed that a 
billet passed through where the “HotEye” system is 
located. “Billet Grade” is a material grade assigned 
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to a specific chemical component of the steel. The 
steels with the same “Billet Grade” share the same 
chemical and carbon component and thus tend to 
have similar physical properties. “Defects Per 
Billet” is the number of defects on the billet surface 
that is captured by “HotEye”. Many other important 
physical parameters of the rolling process (e.g., 
temperature at each stand, tundish temperature, 
nozzle size, etc.) are also available. We did not put 
those data here since this paper will only 
demonstrate the relationship of the number of 
defects with heat number (material grade), strand 
number, and billet-location. 

Many typical surface defects can be found in the 
rolling process. According to the A.I.S.I technical 
report (AISI, 1996), the typical defects are overfill, 
scratches, gorges, seams, laps, etc. Among them, 
seams are rated as the most important defects in 
rolling industry because seams are frequently 
generated in the final product and have detrimental 
impact on the physical properties of the steel. 
Hence, we will focus on the analysis of seam 
defects in this paper. 
TABLE 1.  DATA FROM HOT ROLLING PROCESS. 

Billet 

ID 

 

Heat 

 

Strand 

Billet  

Location 

Billet 

Speed 

Billet 

Grade 

Defects Per  

Billet … 

121752800 123000 1 2 18.43 4140 1 … 

123757000 123002 2 3 18.418 4140 5 … 

127763100 123003 3 10 18.406 4140 1 … 

129753900 123004 4 7 18.411 4140 3 … 

… … … … … … … … 

  

In summary, we will study the relationship between 
the response variable (i.e., the number of seams 
per billet) and the process variables (i.e., heat, 
strand, and billet-location). Because the rolling 
speed will also influence the number of seams from 
previous experience, the speed factor is also 
included in the study as a process variable. The 
dataset used in our paper include three-month 
HotEye measurements of a hot rolling process. 
Billets from 270 different heats are monitored 
during this period. Strand numbers for individual 
billet cover from 1 to 4 and billet-locations for 
individual billet range from 1 to 12. An important 
characteristic of the HotEye data is the significant 
unbalance of our dataset. Different sample sizes 
(number of billets per heat) are found for different 
heats in the existing HotEye data, which may vary 
from two to 46 billets per heat. 

 
MULTILEVEL ANALYSIS OF HOTEYE DATA 
The purpose of the data analysis is to identify the 
impacts of the process factors such as heat, 
strand, and billet-location. In another word, we 
want to identify the variation due to heat factor, the 
variation due to strand factor, and the variation due 

to billet-location factor among the overall variations 
of the number of defects per billet. There are some 
special characteristics of this dataset: (i) The data 
structure is not “flat”, i.e., there are clustered 
groups in this dataset. For example, the 
characteristics of the number of surface defects 
tend to be similar for the same heat. We want to 
identify not only the within-heat variation, but also 
between-heat variation. (ii) A nested structure 
exists in the dataset: To locate a billet, first, heat 
needs to be determined; then, the strand and billet-
location need to be determined within the heat. To 
analyze the impacts of these different factors with 
group and nested structure, we introduce the 
multilevel analysis technique. 

Introduction of Multilevel Analysis 
Two methods are widely used to compare the 
importance of different group effects. The first 
method is Moment Method. The whole dataset is 
pre-sorted into different groups manually. Moments 
of different groups are calculated and compared 
with each other to show the relative importance of 
different group effects. Usually first and second 
order moments (mean and variance) are the two 
most frequently used moments. Occasionally the 
third and fourth order moment applications might 
also be found. For the HotEye data, average 
number of defects per strand can be viewed as a 
preliminary index of relative number of defects 
occurred at different strands while the variance of 
the number of defects per strand shows how much 
the actual number of defects per strand at different 
time deviates from its average value. The same 
rough estimation can also be applied to billet-
location and heat groups. The advantage of this 
method is that it is easy to understand and use. 
However, moment method is a very rough 
estimation and is very sensitive to the sample 
uncertainty.  

The second method is linear regression method. 
Linear regression methods propose a linear 
relationship between the response variable and the 
predicator variables and build up models to fit the 
actual dataset. Systematic theory and many 
statistical inferences are available to quantify the 
goodness-of-fit of the model, i.e., how well the 
model fits the actual data. Hence, regression 
method becomes more and more widely used in 
estimating relationships among factors. Most of the 
regression models used in engineering area is 
ordinary linear regression model, which always 
assumes independent residual errors with constant 
variance among all the individuals, regardless of 
the possibility that individuals from the same 
groups tend to have more similar variation than 
individuals from different groups. For example, 
given the simplest ordinary regression model 

ξ+×= XCY ( Y  is the response variable, C  is a 



constant, X  is predictor variable, ξ is residual 
error), it cannot compare group effects at all since 
there is no group defined in this model. A common 
technique of comparing different group effects in 
the ordinary linear regression model is to predefine 
a set of dummy variables to classify the dataset 
into different groups. Assume we want to test two 
groups: X >0 and X ≤0, two dummy variables 1I  

and 2I  are defined to group the original dataset: 



 >

=
else

Xif
I

,0

0,1
1

and


 ≤

=
else

Xif
I

,0

0,1
2

. Our 

new regression model now can be represented 
as ξ+××+××= 2211 IXCIXCY . Hypothesis tests 

on the coefficients 1C  and 2C  will show if these 

two groups are significantly different from statistical 
point of view. However, this method is not efficient 
for the cases with large number of groups, which is 
true in the HotEye data. In our dataset, the billets 
are chosen from 270 different heats. Obviously, it 
is inefficient to classify all the heats into 270 
different groups and estimate the effect of each 
heat individually even without considering the 
possible interaction effects between different 
groups. Also, if the dataset has higher-level nested 
structure, the “dummy variable” classification 
method does not work because it cannot represent 
both the group variation and sub-group variation at 
the same time. Unlike the ordinary regression that 
focuses too much on the individual and too little on 
the group effect in which individuals are located, 
multilevel regression balanced this problem by 
considering both effects. 

Multilevel Regression Analysis, sometimes called 
Random Coefficient Analysis, has important 
applications in social science research area. Many 
significant statistical results have been achieved in 
this area since the past decade (Hox, 2002, 
Raudenbush and Bryk, 1992).  

A traditional example in multilevel regression 
model is presented by Raudenbush and Bryk 
(1992). We will use this example to show the basic 
principles of multilevel regression model. In the 
example, the relationship between a single 
predictor variable (SocioEconomic Status [SES]) 
and one response variable (Mathematics 
Achievement) within a population of schools is 
studied. The dataset can be grouped as two levels: 
student is level-1 and school is level-2. Suppose 
that we have a random sample of J schools from a 
population (J is a large number), then we can 
represent the relationship within any school j by the 
equation 

ijijjjij UXY ++= 10 αα , Uij∼ N(0,σ2)               (1) 

where
jj r0000 += βα and

jj r1101 += βα . Yij is the 

reported achievement for student i in school j. Uij is 

the level-1 error and assumed to be zero mean and 
variance σ2. α0j is the true mean of achievement in 
school j. α1j is the true Achievement-SES slope for 
school j. β00 is the average achievement across the 
schools. β10 is the average Achievement-SES 
slope across the schools. r0j is the level-2 error 
associated with mean of achievement for school j 
and is assumed to have a mean of 0 and variance 
u2. r1j is level-2 error associated with Achievement-
SES slope for school j and is assumed to have a 
mean of 0 and variance v2. Both r0j and r1j are 
called level-2 random effects. 

From Equation 1, we notice that the random error 
in multilevel regression has a more complicated 
form, r0j+r1jXij+Uij. The residual errors in this case 
are dependent since the components r0j and r1j 
have the same value for every student within 
school j. In addition, the variances of the residual 
errors are different since it depends on r0j and r1j as 
well, which are different for individual schools. Here 
we can clearly see that ordinary regression 
analysis is inappropriate because it fails to capture 
the variation between different groups. 

We can get the combined model by substituting the 
expression of α0j and α1j into Equation (1), 

ijijjjijij UXrrXY ++++= 100100 ββ                (2) 

where we assume: E(r0j)=0, E(r1j)=0, Cov(r0j,Uij) =0, 
Cov(r1j,Uij)=0, and denote Var(r0j)=τ. 

Equation 2 is called the full model of two-level 
regression analysis. However, in many cases 
random slope effects are not very significant and 
thus only random intercept effects are considered 
in the model, i.e. assuming α1j≡α1 is a constant. 
The new simpler model is called random intercept 
model (3). 

ijijjij UXY ++= 10 αα , Uij∼ N(0,σ2)               (3) 

where jj r0000 += βα . Also, we can substitute the 

expression of α1j into (3) to get a combined random 
intercept only model,  

ijjijij UrXY +++= 0100 αβ                            (4) 

Intraclass Correlation Coefficient 

2
0

0

)(

)(

στ
τρ

+
=

+
=

ijj

j

UrVar

rVar  measures the proportion of 

variance that is between different schools to the 
fitted variance of the model. Value σ2 represents 
the within-group variation and τ  captures the 
between-group variation. 

Variance estimation theory in multilevel analysis is 
based on maximum likelihood method. The basic 
idea of maximum likelihood is to choose estimates 
of α, τ and σ2 for which the likelihood of observing 
the actual data Y is at its maximum. A complete 
result of two-level multilevel analysis can be found 
in (Raudenbush and Bryk, 1992). Here we will only 



present the maximum likelihood function along with 
the estimated parameters that maximize the 
likelihood function: 

∑−∑−−−∝ −
jjjj rrUUJNrYf 1'2'22 /log)log()],,(log[ τστστσ , 

maximized at  ∑= NUU jj /ˆ '2σ  and '1ˆ jj rrJ ∑= −τ  where 

N is the total number of level-1 observations and J 
is the effective number of level-2 observations for 
estimation. Uj (j=1,2,…,N) represents random 
effects at level-1 and rj (j=1,2,…,J) represents 
random effects at level-2.  

The extension of the two-level regression model to 
higher levels is straightforward. However, higher-
level models become much more complicated. 
Multilevel regression analysis can be done using 
software such as SAS, SPSS, and HLM, etc. In this 
paper, we choose “GLIMMIX” macro in SAS to 
implement all the data analysis and illustrate the 
procedure on how to compare and identify the 
most important variation source in the hot rolling 
processes. 

Random Intercept Regression Model  
Our goal is to find out the possible relationship 
between one response variable “defects per billet” 
and three predictors––Heat number, Strand 
number, and Billet-location. Our response variable 
is “defects per billet”. It is a typical count data and 
well known to conform to Poisson distribution 
[Snijders 1999]. Our distribution test of the HotEye 
data also verifies this result. To obtain a linear 
model, we apply a natural logarithm to the Poisson 
model. Now we start our model with the simplest 
random intercept model. 

Historical studies have shown that billet speed is a 
significant factor to the number of defects. Hence, 
we will always include billet speed as an 
independent variable in all the models presented in 
this paper. According to the physical structure of 
HotEye data, billet speed is taken as the level-1 
variable, Strand number and Billet-Location are 
taken as level-2 variables, and Heat number is 
taken as level-3 variable. The three-level model is 
presented as follows, 

ijkijkijk USPEEDYLn +×+= 1)( αα    (5) 

where 
000000 jikijk βββα ++= , 

kk 0000000 γγβ += , 

Yijk is number of defects detected on the i-th strand, 
the j-th billet-location in the k-th heat. Uijk is the 
level-1 model error. α ijk is level-1 random intercept. 
α1 is constant coefficient of billet SPEED variable. 
β00k is level-2 random intercept. βi00 is level-2 error 
associated with average number of defects for 
strand i. β0j0 is level-2 error associated with 
average number of defects for billet-location j. γ000 
is the grand mean of number of defects. γ00k is 
level-3 error associated with average number of 
defects for heat k. Maximum likelihood method is 

chosen to estimate the parameters and variances. 
The results of the fitted multilevel regression 
analysis are presented in Table 2. 
TABLE 2.  FITTED RESULT OF THREE-LEVEL 
MODEL (5). 

Effect Intercept SPEED Heat  Strand  
Estimate  -1.0511 0.01767 1.7845 0.3596  

Effect Location  Residual Extra-Dispersion  
Estimate 0.5861 1.0192  1.0192  

The estimated regression equation and related 
parameters:  

     Ln(DefectsPerBillet)=-1.0511 +0.01767 * SPEED   (6) 

Residual=Level-1 variance =Var(Uijk)= 1.0192. 
Strand Effect (Estimated Variance) =Var(βi00)= 
0.3596. Billet-location Effect (Estimated Variance) 
= Var(β0j0)=0.5861. Both Strand Effect and Billet-
location Effect are considered as Level-2 Variance. 
Heat Effect (Estimated Variance) = 
Var(γ00k)=1.7845. Heat Effect is considered as a 
Level-3 Variance. Intraclass correlation 

%8.72
0192.17845.15861.03596.0

7845.15861.03596.0 =
+++

++=ρ . 

Intraclass correlation ρ=72.8% means that 72.8% 
of the variance is at the group level (include strand 
group effect, billet-location group effect, and heat 
group effect), which is very high. It is compelling 
evidence that we should include the “group effect” 
into our model to do multilevel analysis.  

Extra-Dispersion is 1.0192. In the Poisson 
distribution, the mean and variance are equal, but 
empirical count data normally have a variance 
greater than the mean. This phenomenon is called 
Extra-Dispersion. In our case, it is very close to 
one, which shows the Poisson assumption in our 
model is still valid.  

From our regression model, Heat group has the 
most significant variance in the causes of number 
of defects per billet. Billet-location group has 
slightly stronger effects than the strand group. The 
relative weight of the three group effects within the 
explained variance is equal to: 
heat variance: strand variance: billet-location 
variance= 1.7845 : 0.3596 : 0.5861 = 5 : 1 : 1.6. 
Sufficiency of Random Intercept Model 
The full model with both random intercept and 
random slope effect is also fitted to check if the 
existing random intercept model is sufficient to 
explain the variation of HotEye data. Due to the 
complexities of the three-level full model equations, 
we will only show the estimated variances of the 
random slope coefficients in Table 3. From Table 
3, we can see that all the slope variances caused 
by the three groups are very close to zero. Hence, 
it would be sufficient to fit the HotEye data with 



only the simplest random intercept regression 
model. 
TABLE 3.  ESTIMATED VARIANCES FOR SLOPE 
COEFFICIENTS IN FULL MODEL. 

Effect Heat Strand Billet-Location 

Estimate 0.002969 0.000527 0.000358 

Verify the Significance of Heat Effect 
Since heat number is highly correlated with 
material grade, it is possible that the large variation 
of number of defects is caused by material grade 
instead of the heat effect. To verify the significance 
of the heat effect, we choose a frequently used 
material grade 4037 to eliminate the variation 
caused by material grade and thus verify that the 
large variation is caused by the heat effect indeed. 
Twenty-four heats in total are included in our sub-
dataset sorted by the same material grade 4037. 

We will still use three-level regression model (5) as 
the regression model. The fitted regression result is 
shown in table 4. 
TABLE 4.  FITTED RESULTS OF (5) FOR SUB-
DATASET SORTED BY MATERIAL GRADE 4037. 

Effect Intercept SPEED Heat  Strand  
Estimate -2.3215 0.03767 2.3459 0.0000 

Effect Billet-location Residual Extra-Dispersion  
Estimate 0.3814 1 1  

The regression results can be interpreted as 
follows. The estimated regression equation and 
related parameters:  

       Ln(DefectsPerBillet)=-2.3215+0.03767 * SPEED   (7) 

Heat Effect (Estimated Variance) = 2.3459. Billet-
location Effect (Estimated Variance) = 0.3814. 
Strand Effect (Estimated Variance) = 0.0000. 

The fitted regression results show that heat effect 
still plays the most important roll even after the 
material grade change is eliminated. It is still much 
more significant than strand effect and billet-
location effect. 

Comparison of Strand Effect and Billet-location 
Effect 
Under the dominant effect of heat group, both 
strand effect and billet-location appear to be very 
small and similar to each other. To compare the 
strand effect and billet-location effect, we further 
eliminate the heat effect by choosing a specific 
heat group 858600 to fit a two-level Poisson 
regression. The Two-level regression model is 
presented as (8), 

ijijij USPEEDYLn +×+= 1)( αα                   (8) 

where 
jiij 0000 βββα ++= . Yij is number of defects 

detected on i-th strand, j-th billet-location in heat 
group 858600. Uij is the level-1 model error; α ij is 
level-1 random intercept; α1 is constant coefficient 
of billet SPEED; β00 is grand mean of number of 

defects in heat 858600; βi0 is the level-2 error 
associated with average number of defects for 
strand i in heat 858600; β0j is the level-2 error 
associated with average number of defects for 
billet-location j in heat 858600. The fitted 
regression result is shown in Table 5. 
TABLE 5.  FITTED RESULTS OF (8). 

Effect Intercept SPEED Strand  
Estimate -3108.8 68.6088 0.0000 

Effect Billet-location  Residual Extra-Dispersion 
Estimate 0.4251 1 1 

The estimated regression equation and related 
parameters:  
      Ln(DefectsPerBillet)=-3108.79+68.6088* SPEED   (9) 

Billet-location Effect (Estimated Variance) = 
0.4251. Strand Effect (Estimated Variance) = 
0.0000. From the fitted regression result, we can 
see that the strand effect is almost ignorable within 
this given heat, while billet-location group still has 
some effects, though it is not very large compared 
with the level-1 residual error.  Hence, it is safe to 
conclude that billet-location effect is slightly 
stronger than strand effect in this particular heat. 

Some Issues on the Multilevel Regression Model 
Due to the complexity of the model, normally we do 
not seek for higher-order interactions unless large 
residual errors are detected and cannot be 
explained by the existing simple model.  

In our example, only random intercept is assumed 
in our model since no slope effects for the process 
variables are known to relate with any of the group 
effects. If new process variable is found or 
suspected to be involved, we should also include 
the new process variable into our model and 
assume the random slope effect of the process 
variable to check if there is group effect on it. 

Multilevel analysis has the ability to handle 
unbalanced data since it does not require the 
numbers of available measurements for all 
individuals are the same. This is very important in 
our case because not all the billets from the same 
heat are rolled at the same time and thus 
measured data for a full heat usually are not 
available. Sometimes the available data can be 
extremely unbalanced because some billets from 
the same heat are rolled half a year later than the 
others are. 

Hypothesis tests are also available to test if a 
specific strand or billet-location or heat number 
caused more variation than the others did. Due to 
the privacy reasons, we did not list the results in 
this paper. 

CONCLUDING REMARKS 
This paper presented multilevel Poisson regression 
analysis technique to identify the important 



variation sources that have main contributions to 
the large variation of the number of the defects per 
billet. The response variable is the number of 
defects on any given billet, which is measured by 
advanced HotEye sensing system. This is a 
significant improvement on the hot rolling quality 
control procedure. Analysis based on number of 
surface defects of hot rolling steel becomes 
possible since the detailed surface information is 
now available.  

Though it has important applications in social 
science research, multilevel regression is still a 
new technique to many engineering researchers. 
The application of this new technique to the hot-
rolling process is significant since most of the 
variation of the number of defects can be explained 
by the new multilevel model, which confirmed the 
long-term industrial belief that casting process, 
instead of rolling process itself, are critical to the 
surface quality of the hot rolling process. 

Based on our analysis, heat group effect is the 
most important variation source to steel surface 
quality. Industrial experience can also explain its 
significance. Heats with the same material grade 
can be melted at very different date, which 
definitely have certain impacts on relevant process 
parameters, thus affecting the steel surface quality. 
We would suggest some process variables could 
be identified to relate with the heat group variation. 
Hence, we could identify the root cause of large 
variation in heat group eventually. This is the future 
research. 
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