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Abstract

It is a very challenging task to develop effective process control methodologies for multi-operational manufacturing processes.

Although Statistical Process Control (SPC) has been widely used as the primary method in the control of quality, it mainly serves as

a change detection tool rather than a method to identify root causes of process changes. This paper proposes a systematic approach

to overcome the limitations faced by SPC. In this method, a state space variation propagation model is derived from the product and

process design information. The virtual machining concept is applied to isolate faults between operations, and further used in the

root cause determination. The detailed methodology is presented, and a case study is conducted to illustrate and verify the developed

diagnosis method. r 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In order to improve quality and productivity, it is
highly desirable to develop a fast, accurate, and robust
fault diagnosis methodology to identify the root causes
of quality-related problems for manufacturing pro-
cesses. Current practice in industries is a product-
inspection-oriented measurement strategy. The finished
and intermediate products are measured and the
measurements are compared with specifications in the
product design. If it is within the specification limit,
the process is assumed acceptable and it will continue to
be run. If the measurement is out of specification limit,
an exhaustive search is conducted to find the root
causes. This search is usually based on the experience of
the operators and sometimes it is very time consuming.
Statistical Process Control (SPC) is a quality improve-
ment methodology that involves more statistical analysis
than the pure inspection method. However, it largely
depends on reliable historical data to generate reference
for successful process monitoring, and it cannot
determine root causes either. Therefore, a systematic
fault diagnosis methodology for quality improvement of
manufacturing processes is highly desirable in practice.

A manufacturing system usually involves multiple
operations to produce a product. Examples of such
multi-operational processes include automotive body
assembly, machining, microelectronic manufacturing,
and transfer/progressive die processes. In such a process,
the part goes through each operation from the beginning
to the end of the line. The quality features of the part in
different operations are correlated. The final part
variation is a stack up of feature variations from all
operations. For example, a machining process could
have many operations. At each single operation, there
are many types of variation sources, such as the
geometric and kinematic errors, thermal errors, cutting
force induced errors, and fixturing errors. These errors
will be accumulated on the product when it passes
through the whole process. A huge body of literature
can be found on the fault diagnosis and error
compensation on a single machining station. A review
of these papers can be found in Ramesh et al. [1,2].
However, due to the complicated interactions between
different variation sources, very few attempts have
been made on the variation propagation analysis and
fault diagnosis for the multi-operational machining
process.

Mantripragada and Whitney [3] adopted the concept
of output controllability from control theory to evaluate
and improve the automotive body structure design.
Lawless et al. [4] and Agrawal et al. [5] investigated
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variation transmission in both assembly and machining
process by using an AR(1) model. Their method can be
viewed as a data-driven method. Jin and Shi [6]
proposed a state space model to depict the variation
propagation in a multistage body assembly process.
Ding et al. [7] proposed a diagnostic approach for
assembly process based on a state space model.
However, his approach cannot be directly applied in
machining processes.

In this paper, a systematic diagnostic methodology is
proposed to monitor process and determine root causes
of quality-related problems for multi-operational ma-
chining processes. This methodology is based on a state
space model proposed by Huang et al. [8].

The paper is divided into five sections. A brief
review of deviation propagation model and the variation
propagation model are given in Section 2. In Section 3,
the process level diagnosis methodology is introduced.
In Section 4, a three-operation machining process
is used to illustrate the proposed methodology. The
conclusions are given in the last section.

2. Variation propagation and observation

2.1. Review of deviation propagation model

In a machining process, the variation in the final
product is accumulated as the product moves along the
machining line. This accumulating process is shown in
Fig. 1.

Up to operation k (oper. k), the part key surfaces are
represented by a vector XðkÞ and quality characteristics
are denoted as YðkÞ: xðkÞ; representing deviation of
XðkÞ; consists of the previous surface deviation xðk � 1Þ
and newly generated surface deviation xuðkÞ: The main
variation input at oper. k consists of setup error e

f
k

(geometric errors of fixture elements) and machining
error em

k (machine tool geometric and kinematic errors
only). BðkÞ is an indicator matrix which labels all
surfaces that are formed at oper. k: To indicate all other
surfaces that are not formed at oper. k; AðkÞ is defined as
AðkÞ ¼ I � BðkÞ; where I is the identity matrix with the
same dimension of AðkÞ: CðkÞ is a mapping matrix that
relates xðkÞ to the deviation of measurement, i.e. yðkÞ:
wðkÞ and vðkÞ are the noise terms. A state space form
model can be obtained to describe the deviation

propagation in the process.

xðkÞ ¼AðkÞxðk � 1Þ þ BðkÞxuðkÞ þ wðkÞ;

yðkÞ ¼CðkÞxðkÞ þ vðkÞ: ð1Þ

The details of the derivation of this model can be found
in Huang et al. [8].

2.2. Variation propagation model

At oper. k; the part variation is expressed as the
covariance of vector xðkÞ;

KxðkÞ ¼ covðxðkÞÞ: ð2Þ

In the following derivation, Kx is used to represent the
covariance of vector x: Assume wðkÞ follows a normal
distribution, i.e. wðkÞBNð0;KwðkÞÞ: By Eq. (1), we have

KxðkÞ ¼AðkÞKxðk�1ÞA
TðkÞ þ BðkÞKxuðkÞB

TðkÞ

þ 2AðkÞcovðxðk � 1Þ;xuðkÞÞBTðkÞ þ KwðkÞ: ð3aÞ

Eq. (3a) indicates that besides the variation of each
machined surface, the covariance between finished
surfaces and newly generated surfaces also contributes
to the total part variation. These correlations, which are
primarily caused by datums, are quantified by this
equation. The term BðkÞKxuðkÞB

TðkÞ in Eq. (3a), can be
further expressed as

BðkÞKxuðkÞB
TðkÞ ¼ covfRGPðkÞBðkÞ½xu

GðkÞ � TðkÞ�

þ DRðkÞX oðkÞ

þ RGPðkÞBðkÞToðkÞg; ð3bÞ

where RGP is the rotation transformation matrix from
the global machine coordinate to the part coordinate, xu

G

is the deviation of the newly formed surfaces in the
global coordinate. TðkÞ is the translational transforma-
tion vector. X oðkÞ and ToðkÞ are nominal values of the
surfaces and translation vector at oper. k: DRðkÞ ¼
RGPðkÞBðkÞRo

PGðkÞ � BðkÞ is the deviation of the rota-
tion transformation matrix, where Ro

PGðkÞ is the nominal
rotation transformation matrix from the part coordinate
to the global machine coordinate at oper. k: It can be
shown that the terms RGPðkÞ; DRðkÞ and TðkÞ are related
with setup errors and xu

GðkÞ is caused by machining error
only. The details of the definitions of these terms can be
found in Huang et al. [8]. To simplify Eq. (3b), we define

Pk ¼ DRðkÞX oðkÞ þ RGPðkÞBðkÞToðkÞ

and Ku
k ¼ BðkÞKxuðkÞB

TðkÞ:
ð3cÞ

Thus Eq. (3b) is rewritten as

Ku
k ¼KRGPðkÞBðkÞ½xu

G
ðkÞ�TðkÞ� þ KPk

þ 2covðRGPðkÞBðkÞ½xu
GðkÞ � TðkÞ�;PkÞ: ð3dÞ

Eq. (3d) shows that the variance of newly machined
surfaces Ku

k is consisted of three components: (1)
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Fig. 1. Error propagation in the multi-operational machining process.
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KRGPðkÞBðkÞ½xu
G
ðkÞ�TðkÞ�; where RGPðkÞBðkÞ½xu

GðkÞ � TðkÞ�
can be interpreted as machining error expressed in the
part coordinate; (2) KPk

is the variation caused by setup
error only; (3) covariance of the first two components. It
also shows that without machining error ðxu

GðkÞ ¼ 0Þ;
setup induced error still causes product variation.

2.3. Variation observation

At oper. k; the variation of part characteristics is
expressed as the covariance of vector yðkÞ; i.e., KyðkÞ ¼
covðyðkÞÞ: By Eq. (1), we have

KyðkÞ ¼ CðkÞKkCTðkÞ þ KvðkÞ: ð4Þ

Therefore, variation propagation and observation can
be expressed by Eqs. (3a), (3b) and (4).

Suppose that only the end-of-line observation Y ðNÞ is
available. By Eq. (1), we have yðNÞ ¼ CðNÞxðNÞ þ vðNÞ:
The solution of state space equation is

xðNÞ ¼
XN

i¼1

FðN; iÞBðiÞxuðiÞ þ FðN; 0Þxð0Þ

þ
XN

i¼1

FðN; iÞwðiÞ; ð5aÞ

yðNÞ ¼
XN

i¼1

CðNÞFðN ; iÞBðiÞxuðiÞ

þ CðNÞFðN; 0Þxð0Þ þ e; ð5bÞ

where the state transition matrix Fð
; 
Þ is defined as
FðN; iÞ ¼ AðNÞAðN � 1Þ?AðiÞ and Fði; iÞ ¼ I : xð0Þ re-
presents the raw workpiece surface deviation. e is the
summation of all modeling uncertainty and sensor noise
terms and e ¼

PN
i¼1 CðNÞFðN; iÞwðiÞ þ vðNÞ: If we define

cðiÞ as cðiÞ ¼ CðNÞFðN; iÞ; we have

KyðNÞ ¼
XN

i¼1

cðiÞKu
i cTðiÞ þ 2

XN

j¼1

Xj

i¼1

cðiÞBðiÞ

� covðxuðiÞ;xuðjÞÞBTðjÞcTðjÞ

þ cð0ÞK0cð0Þ
T þ Ke: ð6Þ

Eq. (6) shows that four components contribute final
product variation: machined surface variation, covar-
iance between surfaces machined at different operations,
raw workpiece variation and variation from background
noise. Once the product design is determined, the
number N in the term

PN
i¼1 cðiÞxuðiÞcTðiÞ is fixed. Only

the magnitude of this term can be reduced by process
improvement. However, the second term is determined
by the process design. If there is no surface in X uðiÞ
used as datum at operation j, then covðxuðiÞ;xuðjÞÞ ¼ 0:
Therefore, product variation can be reduced by avoiding
correlation among operations.

3. Process diagnosis

The proposed process diagnostics is to systematically
identify faulty operations in the multi-operational
machining processes. The virtual machining concept is
applied to isolate faults between operations, and further
used in root cause determination. The input data to this
diagnosis method is the part measurement and we
assume that the normal condition of the machining
process is known.

3.1. Fault isolation by virtual machining

If a surface is machined by using previously machined
surfaces as datum, the deviation or variations of this
surface is jointly affected by faults in the current and
previous operations. The proposed diagnostics is to
isolate the faults at the current operation and previous
operations.

The virtual oper. k is proposed to distinguish
transferred faults and newly generated faults. It is
defined as the metal cutting process without em

k and e
f
k;

while datum error is still the same as the real oper. k;
hence the term ‘‘virtual machining’’.

As the output difference between virtual and real
operation is only caused by em

k and e
f
k; the proposed

process level fault isolation methodology is based on the
following steps:

1. Collect measurement data and compute statistics. We
have yðkÞ; lyðkÞ ¼ EðyðkÞÞ and KyðkÞ ¼ covðyðkÞÞ:

2. Virtual machining can be performed based on the
following equations.

x0ðkÞ ¼AðkÞxðk � 1Þ þ BðkÞxu0 ðkÞ þ wðkÞ;

y0ðkÞ ¼CðkÞx0ðkÞ þ vðkÞ; ð7Þ

where x0; y0 are the part deviation and measurement
deviation from virtual machining. BðkÞxu0 ðkÞ is
simplified as

BðkÞxu0 ðkÞ ¼DRðkÞX oðkÞ

� RGPðkÞBðkÞDTðkÞ; ð8Þ

where RGPðkÞ; DRðkÞ and DTðkÞ are only caused by
the datum error at oper. k: Denote ly0ðkÞ ¼ Eðy0ðkÞÞ
and Ky0ðkÞ ¼ covðy0ðkÞÞ: Fault isolation can be per-
formed by comparing yðkÞ and y0ðkÞ:

3. If the mean and covariance of yðkÞ and y0ðkÞ are used
as the patterns of real and virtual operation k;
occurrence of faults can be identified by performing
hypothesis testing between patterns of yðkÞ and y0ðkÞ:

The above procedure can be repeated for operations
N;N � 1;y; 2; 1: As a result, fault isolation between
operations can be achieved. Fig. 2 shows the methodol-
ogy of fault isolation between operations.
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3.2. Faulty operation determination by hypothesis tests

Statistics of yðkÞ and y0ðkÞ are estimated based on the
measurement data and the simulation data, respectively.
Assume yðkÞ and y0ðkÞ all follow multivariate normal
distribution, in which yðkÞ and y0ðkÞ are p-variant, i.e., p

characteristics will be inspected.
Suppose we take n1 random samples of yðkÞ: Assume

the machining datum data is available from yðk � 1Þ:
Then xu0 ðkÞ is attainable by Eq. (8). Thus, we can have
n2 samples of y0ðkÞ by simulation and measurement.
From these measurements and simulation results, we
can easily obtain the sample mean and sample standard
deviation. Hence, hypothesis tests can be conducted to
determine the faulty operations. The hypothesis test
procedure is given below:

1. H0 : KyðkÞ ¼ Ky0ðkÞ vs: H1 : KyðkÞaKy0ðkÞ:

If H0 hypothesis is rejected at significance level a;
faults are assumed to occur at oper. k and we
terminate the test. If H0 hypothesis fails to be
rejected, we go on to the second test in step 2.
The details of hypothesis tests can be referred to
Muirhead [9]. The basic result is as follows. The
unbiased likelihood ratio statistic is given as

L

k ¼

ðdetððn1 � 1ÞSyðkÞÞÞ
ðn1�1Þ=2ðdetððn2 � 1ÞSy0ðkÞÞÞ

ðn2�1Þ=2

½detððn1 � 1ÞSyðkÞ þ ðn2 � 1ÞSy0ðkÞÞ�ðn1þn2�2Þ=2

�
ðn1 þ n2 � 2Þððn1þn2�2Þ=2Þp

ðn1 � 1Þððn1�1Þ=2Þpðn2 � 1Þððn2�1Þ=2Þp
: ð9Þ

Its approximate distribution is

Pð�2r logL

kpxÞ ¼Pðw2

f pxÞ

þ
r

M2
½Pðw2

fþ4pxÞ

� Pðw2
f pxÞ� þ OðM�3Þ ð10Þ

for large M ¼ rðn1 þ n2 � 2Þ; where

r ¼ 1 �
2p2 þ 3p � 1

6ðp þ 1Þðn1 þ n2 � 2Þ
n1 � 1

n2 � 1
þ

n2 � 1

n1 � 1
þ 1

� �
;

f ¼
pðp þ 1Þ

2
;

r ¼
pðp þ 1Þ

48
ðp � 1Þðp þ 2Þ

n1 � 1

n2 � 1
þ

n2 � 1

n1 � 1
þ 1

� ��

�6 ðn1 þ n2 � 2Þð1 � rÞ½ �2
�

and Pðw2
f pxÞ is Chi-square distribution with f degrees

of freedom. We reject H0 if �2r logL

k > cf ðaÞ; where

cf ðaÞ denotes the upper 100a% point of the w2
f

distribution.
2. H0 : lyðkÞ ¼ ly0ðkÞ vs: H1 : lyðkÞaly0ðkÞ with KyðkÞ ¼

Ky0ðkÞ=unknown covariance

If H0 hypothesis is rejected at level a; mean shift are
assumed to occur at oper. k: If H0 hypothesis fails to
be rejected, no fault occurs at oper. k. The two-sample
T2-statistic is given by

T2
a;p;n1þn2�2 ¼ ðyðkÞ � y0ðkÞÞT

�
1

n1
þ

1

n2

� �
ðn1 � 1ÞSyðkÞ þ ðn2 � 1ÞSy0ðkÞ

n1 þ n2 � 2

� ��1

� ðyðkÞ � y0ðkÞÞ ð11Þ

with n1 þ n2 � 2 > p: yðkÞ represents sample mean and
SyðkÞ represents sample covariance matrix.

Although the dimension of yðkÞ is p; the number of
varied components in yðkÞ is less than p at each
operation, because surfaces are not machined only at
one operation (for N > 1). Therefore, KyðkÞ is always a
singular matrix. Since hypothesis tests require covar-
iance matrices to be full rank, instead of yðkÞ; we test its
sub-vector, whose components varies in yðkÞ: This is
shown clearly in the case study.
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Fig. 2. Fault isolation between operations.
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4. Case study

A case study is performed to show the application of
the proposed process level diagnostic methodology. The
machining process is assumed to produce the part
shown in Fig. 3. Table 1 is the process sheet. According
to the design specification of the part in Fig. 3 and the
process sheet, we know that planes A–D are design
datum, which are also used as machining datum. D–F,
are surfaces to be machined. D1 stands for the machined
surface D. Thus A–F are the seven surfaces in vector X ;
where Xoð3Þ; the nominal values of X after the 3rd
operation, is shown as an example in Table 2.

The measured characteristics at different operations
and their specifications are determined by the part
design. Yoð3Þ is listed in Table 3 for illustration. Only
dimension, location, and orientation related tolerances
are considered in this study.

The process is simulated by using the state space
equations. The final product characteristics (listed in
Table 3) are quality measures. The procedure of the case
study is as follows:

(1) Simulate the machining process under three cases:
no faulty operation (machining error and setup
error are at the normal level at each operation), one
faulty operation (machining error and setup error
are increased at the first operation), and two
correlated faulty operations (machining error and
setup error are increased at the first and the third
operation). The parameter chosen for noise and
fault distributions are given in Table 4.

(2) Randomly select 50 samples for each case. The
sample data is treated as from real operations, in
contrast to virtual operations.

(3) With sample information, virtual machining is
performed to generate 50 virtual parts for each
case.

(4) Set significance level a ¼ 0:05; conduct hypothesis
test for each case and identify faulty operation(s).

The seven characteristics in Table 3 are of interest.
They are divided into three sub-vectors ðykðkÞÞ as shown
in Table 5.

The results are shown in Table 6. The hypothesis
testing result shows all three operations are statistically
in control for case 1, because the test statistics values are
less than the threshold, e.g. in oper.1, 1.8548o7.8147
and 4.1931o6.6422. The hypothesis testing result
suggests faults happen in the first operation in
case 2, since the variance test for oper.1 shows
35.5818>7.8147. Although the first operation and the
third operation are correlated in case 3, the variance
tests of oper.1 and oper.3 show that 18.8749>7 and

Table 1

Process sheet

Oper. Before After Description Locating datum

(primary+secondary +

tertiary datum)

1 Mill face D A+C+B

2 Drill hole E

through

A+C+B

3 Mill face F D1+C+B

Fig. 3. Part drawing and operation steps for this part.

Table 2

Part representation: sub-vectors of Xoð3Þ

A B C D E F

nx 0 �1 0 0 0 0.707

ny 0 0 �1 0 1 0

nz �1 0 0 1 0 0.707

px 0 0 0 0 80 240

py 0 0 0 0 0 0

pz 0 0 0 120 60 120

d1 0 0 0 0 60 0
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16.273>7.8147, which suggest that both operations
have faults.

5. Conclusion

The proposed monitoring and diagnostic methodol-
ogy are applicable in multi-operational machining

processes. Even in the situations of no historical
measurement data, quality improvement can still be
achieved by utilizing a process model and prior knowl-
edge about machine tool and fixture, like machine tool
repeatability and fixture tooling tolerance. The prior
knowledge will be transformed into noise distribution in
the process model. By doing all of this, cause–effect
relation between the part variations and operation
variations can be analyzed through variation propaga-
tion model. It provides insight understanding of the
process variation, which is helpful for process design,
analysis and diagnosis. It is proved successful by the
simulation study.

The proposed diagnostic methodology is limited to
the process level. Operation level problems, such as
fixture or machine tool failures, cannot be distinguished.
Further work on operation level diagnostics should be
done based on the state space model.
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